-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils_metrics.py
703 lines (594 loc) · 30.7 KB
/
utils_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
import torch,numpy as np, torchio as tio
import torch.nn.functional as F
from torch.utils.data import DataLoader
from timeit import default_timer as timer
import json, os
import pandas as pd
from segmentation.config import Config
from segmentation.run_model import ArrayTensorJSONEncoder
from segmentation.collate_functions import history_collate
from segmentation.utils import to_numpy
from monai.metrics import compute_hausdorff_distance, compute_average_surface_distance #warning cpu metrics
from monai.metrics import compute_confusion_matrix_metric, get_confusion_matrix, DiceHelper, compute_generalized_dice
from skimage.measure import euler_number, label
from segmentation.losses.dice_loss import Dice
from segmentation.metrics.utils import MetricOverlay
from utils_file import get_parent_path, gfile, gdir
import subprocess
dice_instance = Dice()
metric_dice = dice_instance.all_dice_loss
#metric_dice = dice_instance.mean_dice_loss #warning argument must have 5 dim
#metric_dice = dice_instance.dice_loss # here 4 or 5 dim (every thing is flatten)
met_overlay = MetricOverlay(metric_dice, band_width=5) #, channels=[2])
confu_met=["false discovery rate", "miss rate", "balanced accuracy", "f1 score"]
confu_met_names=['fdr', 'miss', 'bAcc', 'f1' ]
import torch.nn as nn
import torch.nn.functional as F
from scipy.ndimage.morphology import distance_transform_edt
#from pykeops.torch import LazyTensor
#from scipy.ndimage.morphology import distance_transform_edt
def erode3D(mask):
return -F.max_pool3d(-mask, (3, 3, 3), (1, 1, 1), (1, 1, 1))
def dilate3D(mask):
return F.max_pool3d(mask, (3, 3, 3), (1, 1, 1), (1, 1, 1))
#def erode2D(mask):
# return -F.max_pool2d(-mask, (3, 3), (1, 1), (1, 1))
#def dilate2D(mask):
# return F.max_pool2d(mask, (3, 3), (1, 1), (1, 1))
def dilate(mask):
if mask.dim() == 5:
return dilate3D(mask)
elif mask.dim() == 4:
return dilate2D(mask)
else:
raise ValueError("Tensor must be 2D or 3D")
def erode(mask):
if mask.dim() == 5:
return erode3D(mask)
elif mask.dim() == 4:
return erode2D(mask)
else:
raise ValueError("Tensor must be 2D or 3D")
def get_edges(mask):
if mask.dim() == 5:
ero = erode3D(mask)
elif mask.dim() == 4:
ero = erode2D(mask)
else:
raise ValueError("Tensor must be 2D or 3D")
contour = torch.logical_xor(ero > 0.5, mask > 0.5)
return contour
def soft_erode(img):
if len(img.shape) == 4:
p1 = -F.max_pool2d(-img, (3, 1), (1, 1), (1, 0))
p2 = -F.max_pool2d(-img, (1, 3), (1, 1), (0, 1))
return torch.min(p1, p2)
if len(img.shape) == 5:
p1 = -F.max_pool3d(-img, (3, 1, 1), (1, 1, 1), (1, 0, 0))
p2 = -F.max_pool3d(-img, (1, 3, 1), (1, 1, 1), (0, 1, 0))
p3 = -F.max_pool3d(-img, (1, 1, 3), (1, 1, 1), (0, 0, 1))
return torch.min(torch.min(p1, p2), p3)
else:
raise ValueError("Can only process 3D images")
def soft_dilate(img):
if len(img.shape) == 4:
return F.max_pool2d(img, (3, 3), (1, 1), (1, 1))
elif len(img.shape) == 5:
return F.max_pool3d(img, (3, 3, 3), (1, 1, 1), (1, 1, 1))
def soft_open(img):
return soft_dilate(soft_erode(img))
def hard_open(img):
return dilate(erode(img))
def soft_skel(img, max_iter=100):
skel = F.relu(img - soft_open(img))
iteration = 0
with torch.no_grad():
while True and iteration < max_iter:
iteration += 1
img = soft_erode(img)
# img = erode(img)
delta = F.relu(img - soft_open(img))
# delta = F.relu(img - hard_open(img))
to_add = F.relu(delta - skel * delta)
if not to_add.sum():
break
skel = skel + F.relu(delta - skel * delta)
return skel
def soft_cldice(y_trueAll, y_predAll, iter_=100, smooth=10e-7):
B = y_trueAll.shape[0]
C = y_trueAll.shape[1]
cldice_all = torch.zeros((B,C)) #[]
for b in range(B):
for c in range(C):
y_pred = y_predAll[b, c, ...]
y_true = y_trueAll[b, c, ...]
y_pred = y_pred.unsqueeze(0).unsqueeze(0)
y_true = y_true.unsqueeze(0).unsqueeze(0)
skel_pred = soft_skel(y_pred, iter_)
skel_true = soft_skel(y_true, iter_)
tprec = (torch.sum(torch.multiply(skel_pred, y_true)) + smooth) / (torch.sum(skel_pred) + smooth)
tsens = (torch.sum(torch.multiply(skel_true, y_pred)) + smooth) / (torch.sum(skel_true) + smooth)
#cl_dice = 1. - 2.0 * (tprec * tsens) / (tprec + tsens)
cl_dice = 2.0 * (tprec * tsens) / (tprec + tsens)
cldice_all[b,c] = cl_dice.detach().cpu() #.numpy()
return cldice_all
def get_soft_edges(mask):
if mask.dim() == 5:
ero = soft_erode(mask)
else:
raise ValueError("Tensor must be 2D or 3D")
contour = torch.logical_xor(ero > 0.5, mask > 0.5)
return contour
def Average_Hausdorff_Distance(gth, pred, method="scipy", soft=True):
B = gth.shape[0]
C = gth.shape[1]
gth = (gth > 0.5).float()
pred = (pred > 0.5).float()
if soft:
gth_edges = get_soft_edges(gth)
pred_edges = get_soft_edges(pred)
else:
gth_edges = get_edges(gth)
pred_edges = get_edges(pred)
ahds_losses, ahds_losses_dir = torch.zeros((B,C)), torch.zeros((B,C)) #[], []
hds_losses, hds_losses_dir = torch.zeros((B,C)),torch.zeros((B,C)) #[], []
for b in range(B):
for c in range(C):
gth_edges_bc = gth_edges[b, c, ...]
pred_edges_bc = pred_edges[b, c, ...]
if (not gth_edges_bc.sum()) or (not pred_edges_bc.sum()):
gth2pred = torch.tensor(float('nan'))
pred2gth = torch.tensor(float('nan'))
ahd = (gth2pred + pred2gth) / 2
elif method == "scipy":
gth_edges_bc = gth_edges_bc.detach().cpu().numpy()
pred_edges_bc = pred_edges_bc.detach().cpu().numpy()
gth_edges_bc_dm = distance_transform_edt(1 - gth_edges_bc)
pred_edges_bc_dm = distance_transform_edt(1 - pred_edges_bc)
gth2pred = pred_edges_bc_dm[gth_edges_bc]
pred2gth = gth_edges_bc_dm[pred_edges_bc]
ahd1, ahd2 = gth2pred.mean(), pred2gth.mean()
hd1, hd2 = gth2pred.max(), pred2gth.max()
#ahd = (gth2pred + pred2gth) / 2
elif method == "keops":
gth_edges_bc_coordinates = torch.nonzero(gth_edges_bc)
pred_edges_bc_coordinates = torch.nonzero(pred_edges_bc)
X = LazyTensor(gth_edges_bc_coordinates.view(gth_edges_bc_coordinates.shape[0], 1, gth_edges_bc_coordinates.shape[1]).float())
Y = LazyTensor(pred_edges_bc_coordinates.view(1, pred_edges_bc_coordinates.shape[0], pred_edges_bc_coordinates.shape[1]).float())
Distance_matrix = ((X - Y)**2).sum(dim=2)**0.5
gth2pred = Distance_matrix.min_reduction(1).mean()
pred2gth = Distance_matrix.min_reduction(0).mean()
ahd = (gth2pred + pred2gth) / 2
ahd = ahd.cpu().numpy()
#hds_losses.append(ahd)
#ahds_losses.append(ahd1); ahds_losses_dir.append(ahd2); hds_losses.append(hd1); hds_losses_dir.append(hd2)
ahds_losses[b,c] = ahd1; ahds_losses_dir[b,c] = ahd2; hds_losses[b,c] = hd1; hds_losses_dir[b,c] = hd2
#return np.array(hds_losses).mean(), gth2pred, pred2gth
return ahds_losses, ahds_losses_dir, hds_losses, hds_losses_dir
def mrview_from_df(df, col_name, condition, bin_overlay_class=0):
dfsub = df[df[col_name]==condition]
for dfser in dfsub.iterrows():
dfser = dfser[1]
#print(f'{dfser.metric_dice_loss_GM:.2} GM dicm from {dfser.model} Predction {dfser.fpred} ')
if "metric_dice_loss_GM" in dfser:
dicegm = "metric_dice_loss_GM"
elif "dice_GM" in dfser:
dicegm = "dice_GM"
elif "metric_dice_GM" in dfser:
dicegm = "metric_dice_GM"
print(f'#{dfser[dicegm]:.2} GM dicm from {dfser.model} ')
return mrview_overlay(list(dfsub.finput.values), [dfsub.flabel.values[0]] + list(dfsub.fpred.values),
bin_overlay_class=bin_overlay_class)
def mrview_overlay(bg_img, overlay_list, bin_overlay_class=0):
if not isinstance(bg_img, list):
bg_img = [bg_img]
if not isinstance(overlay_list, list):
overlay_list = [overlay_list]
col_overlay = [ '0,1,0', '1,0,0', '0,0,1', '1,1,0', '0,1,1', '1,0,1', '1,0.5,0', '0.5,1,0', '1,0,0.5', '0.5,0,1']
if bin_overlay_class:
mrviewopt = [
f'-overlay.opacity 0.4 -overlay.colour {col_overlay[k]} -overlay.intensity 0,{bin_overlay_class} ' \
f'-overlay.threshold_min {bin_overlay_class-0.5} -overlay.threshold_max {bin_overlay_class+0.5} ' \
f'-overlay.interpolation 0 -mode 2 -size 1300,900 ' for k in range(len(overlay_list))]
else:
mrviewopt = [
f'-overlay.opacity 0.4 -overlay.colour {col_overlay[k]} -overlay.intensity 0,1 -overlay.threshold_min 0.5 -overlay.interpolation 0 -mode 2'
for k in range(len(overlay_list)) ]
cmd = 'vglrun mrview '
cmd = 'mrviewv '
for img in bg_img:
cmd += (f' {img} ')
for nb_over, img in enumerate(overlay_list):
cmd += (f' -overlay.load {img} {mrviewopt[nb_over]} ')
print(f'{cmd} ')
return cmd
def display_res(dir_pred, bg_files, gt_files=None):
cmd = []
for nb_pred, one_dir_pred in enumerate(dir_pred):
# one_dir_pred = dir_pred[0]
all_file = gfile(one_dir_pred, 'nii')
print(f'working on {one_dir_pred}')
for ii, one_pred in enumerate(all_file):
if nb_pred == 0:
if gt_files is not None:
cmd.append([gt_files[ii]])
cmd[ii].append(one_pred)
else:
cmd.append( [one_pred])
else:
cmd[ii].append(one_pred)
mrview_cmd=[ mrview_overlay(bg_files[kk], cmd[kk]) for kk in range(len(cmd))]
return mrview_cmd
def display_res2(resdir, doit=False):
models = gdir(resdir,'.*')
sujname = get_parent_path(gdir(models[0],'.*'))[1]
for sujn in sujname:
dir_pred = gdir(resdir, ['.*', sujn])
fdata = gfile(dir_pred[0],'data')
flabel= gfile(dir_pred[0],'label')
fpred = gfile(dir_pred,'pred')
cc = mrview_overlay(fdata, flabel + fpred , bin_overlay_class=2)
if doit:
subprocess.run( cc.split(' ') )
def binarize_5D(data, add_extra_to_class=None):
return met_overlay.binarize(data, add_extra_to_class=add_extra_to_class)
def compute_PVmetric_from_list(f1_list,f2_list,sujname_list, volume_metric=False, confu_metric=False ):
df = pd.DataFrame()
dice_instance = Dice()
metric_dice = dice_instance.all_dice_loss
# metric_dice = dice_instance.mean_dice_loss #warning argument must have 5 dim
# metric_dice = dice_instance.dice_loss # here 4 or 5 dim (every thing is flatten)
met_overlay = MetricOverlay(metric_dice, band_width=5) # , channels=[2])
for f1,f2, sujname in zip(f1_list, f2_list, sujname_list):
i1 = tio.LabelMap(f1); i2 = tio.LabelMap(f2)
dsoft_dic = met_overlay(i1.data.unsqueeze(0), i2.data.unsqueeze(0))
def compute_metric_from_list(f1_list,f2_list,sujname_list, labels_name, selected_label, concat_label_list=None,
distance_metric=False,euler_metric=False, volume_metric=False, confu_metric=False ):
df = pd.DataFrame()
thot = tio.OneHot()
for f1,f2, sujname in zip(f1_list, f2_list, sujname_list):
i1 = tio.LabelMap(f1); i2 = tio.LabelMap(f2)
i1 = thot(i1); i2 = thot(i2);
prediction = i1.data.unsqueeze(0)
target = i2.data.unsqueeze(0)
if prediction.shape[1]> len(selected_label): #quick hack to compare only in sel label (which supposed here to be the first ones)
prediction = prediction[:, :len(selected_label), ...]
if target.shape[1]> len(selected_label):
target = target[:, :len(selected_label), ...]
df_one = computes_all_metric(prediction, target, labels_name, selected_label=selected_label, concat_label_list=concat_label_list,
volume_metric=volume_metric, distance_metric=distance_metric, euler_metric=euler_metric, confu_metric=confu_metric)
ddf_one={}
ddf_one['sujname'] = [sujname]
ddf_one['volume_pred'] = [f1]; ddf_one['volume_targ'] = [f2]
df_one = pd.concat([df_one, pd.DataFrame(ddf_one)], axis=1)
df = pd.concat([df, pd.DataFrame(df_one)], ignore_index=True)
return df
def computes_all_metric(prediction, target, labels_name, indata=None, selected_label=None, concat_label_list=None,
selected_lab_mask=None, lab_mask_name=None, verbose=True, distance_metric=False,
euler_metric=False, volume_metric=False, confu_metric=False):
prediction_bin = met_overlay.binarize(prediction)
#print(f'volume is {volume_metric}')
mask = None
if selected_label is not None:
if prediction.shape[1] > 1:
prediction = prediction[:, selected_label, ...]
prediction_bin = prediction_bin[:, selected_label, ...]
else: #WARNING buggy select on 3d only for pred
print('warning TODO')
todo
prediction_bin = prediction
prediction_bin[prediction_bin!=selected_label[0]]=0
prediction_bin[prediction_bin==selected_label[0]]=1
if target.shape[1] > 1: #more than one chanel
if selected_lab_mask is not None:
mask = [target[:, ssi, ...] for ssi in selected_lab_mask]
if len(mask) != len(lab_mask_name):
raise('wrong size for the masks ')
target = target[:, selected_label, ...]
if concat_label_list is not None:
for concat_label in concat_label_list:
ind_select = np.array(concat_label).astype(bool)
pred_new = prediction[:,ind_select, ...].sum(axis=1, keepdims=True)
prediction = torch.cat([prediction, pred_new], 1)
pred_new = prediction_bin[:,ind_select, ...].sum(axis=1, keepdims=True)
prediction_bin = torch.cat([prediction_bin, pred_new], 1)
targ_new = target[:, ind_select, ...].sum(axis=1, keepdims=True)
target = torch.cat([target, targ_new], 1)
list_label = list(labels_name)
list_label.append('_'.join(np.array(labels_name)[ind_select]))
labels_name = np.array(list_label)
start = timer()
#dd = metric_dice(prediction_bin, target)
# other option from monai is :
# metric = DiceMetric(include_background=True, reduction="none", get_not_nans=False)
# res = metric(y_pred=prediction_bin, y=target)
dd_dice, not_nan = DiceHelper(include_background=True, softmax=False)(prediction_bin,target)
col_name = [f'dice_{ss}' for ss in labels_name]
df_one = pd.DataFrame([dd_dice.numpy()], columns=col_name)
df_one = {kk:vv for vv,kk in zip(dd_dice.numpy(), col_name)}
if volume_metric:
for kk, llname in enumerate(labels_name):
target_vol = target[:, kk, ...].sum().numpy()
df_one[f'vol_targ_{llname}'] = target_vol
if target_vol:
df_one[f'vol_pred_ration{llname}'] = prediction[:, kk, ...].sum().numpy() / target_vol
else:
df_one[f'vol_pred_ration{llname}'] = 0
#arg todo metric_dice without batch reduction
#dd = metric_dice(prediction, target)
#res_dict.update( {f'softdice_{k}':float(v) for k,v in zip(labels_name, dd)} )
if mask is not None:
dd = dict()
for jj, mask_name in enumerate(lab_mask_name):
for ii, lname in enumerate(labels_name):
nbvox = (prediction_bin[:,ii, ...] * mask[jj]).sum()
dd[f'nb_{lname}_in_{mask_name}'] = nbvox.numpy()
res_dict.update(dd)
#compute euleur number
if euler_metric:
dd = dict()
for ii, lname in enumerate(labels_name):
pred_one = prediction_bin[0,ii,...].numpy()
pred_label, num_label = label(pred_one, return_num=True, connectivity=3)
#find the biggest component
ind_biggest, nb_biggest = 0,0
for kk in range(1,num_label+1):
nbvox = np.sum(pred_label==kk)
if nbvox> nb_biggest:
nb_biggest=nbvox
ind_biggest = kk
pred_biggest = pred_label==ind_biggest
dd[f'nb_isolated_{lname}'] = np.sum(pred_one) - np.sum(pred_biggest)
dd[f'nb_isolated_ratio{lname}'] = (np.sum(pred_one) - np.sum(pred_biggest))/np.sum(pred_one)*100
dd[f'eul_{lname}'] = euler_number(pred_biggest, connectivity=3)
res_dict.update(dd)
if confu_metric:
resConfu = get_confusion_matrix(prediction_bin, target)
for ii,mmm in enumerate(confu_met):
dd_confu = compute_confusion_matrix_metric(mmm,resConfu)
for kk, llname in enumerate(labels_name):
df_one[f'{confu_met_names[ii]}_{llname}'] = dd_confu[:,kk].numpy()
#res_dict.update({f'{confu_met_names[ii]}_{k}': float(v) for k, v in zip(labels_name, batch_confu)})
if distance_metric:
# prediction = prediction.cpu()
# buggy discrete values 1 ???
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
prediction_bin = prediction_bin.to(device)
target = target.to(device)
dd = Average_Hausdorff_Distance(prediction_bin, target)
for kk, llname in enumerate(labels_name):
df_one[f'Sdis_{llname}'] = dd[0][:, kk].numpy()
for kk, llname in enumerate(labels_name):
df_one[f'SdisI_{llname}'] = dd[1][:, kk].numpy()
for kk, llname in enumerate(labels_name):
df_one[f'SdisMax_{llname}'] = dd[2][:, kk].numpy()
for kk, llname in enumerate(labels_name):
df_one[f'SdisIMax_{llname}'] = dd[3][:, kk].numpy()
#res_dict.update({f'Sdis_{k}': float(v) for k, v in zip(labels_name, dd[0])})
#res_dict.update({f'SdisI_{k}': float(v) for k, v in zip(labels_name, dd[1])})
#res_dict.update({f'SdisMax_{k}': float(v) for k, v in zip(labels_name, dd[2])})
#res_dict.update({f'SdisIMax_{k}': float(v) for k, v in zip(labels_name, dd[3])})
cl_dice = soft_cldice(prediction_bin, target)
for kk, llname in enumerate(labels_name):
df_one[f'clDice_{llname}'] = cl_dice[:, kk].numpy()
#res_dict.update({f'clDice_{k}': float(v) for k, v in zip(labels_name, cl_dice)})
# alternative with monai (but cpu)
# dd = compute_average_surface_distance(prediction_bin, target, include_background=True)
# res_dict.update( {f'Sdis_{k}':float(v) for k,v in zip(labels_name, dd[0])} )
# dd = compute_hausdorff_distance(prediction_bin, target, percentile=100, include_background=True)
# res_dict.update( {f'haus_{k}':float(v) for k,v in zip(labels_name, dd[0])} )
except:
print('distand failed')
if verbose:
print(f'Computed distance metric in {timer()-start}')
start = timer()
if indata is not None:
df_sig = pd.DataFrame()
for nb_batch, (pred, targ, inda) in enumerate( zip(prediction_bin, target, indata)):
#Signal stat for prediction
res_dict = dict()
for ind_lab, labn in enumerate(labels_name):
sig = inda[pred[[ind_lab],...]>0].numpy() #trick to avoid unsqueeze(0)
if len(sig)>0 : #too small patch ... no data
data_qt = np.quantile(sig,[0.1, 0.25, 0.5, 0.75, 0.9])
data_mean, data_std = np.mean(sig), np.std(sig)
res_dict.update({f'PredSmean_{labn}': data_mean, f'PredSstd_{labn}': data_std,f'PredSquant_{labn}':data_qt})
#Signal stat for ground truth
for ind_lab, labn in enumerate(labels_name):
sig = inda[targ[[ind_lab],...]>0].numpy() #trick to avoid unsqueeze(0)
if len(sig)>0 : #too small patch ... no data should not happend here
data_qt = np.quantile(sig,[0.1, 0.25, 0.5, 0.75, 0.9])
data_mean, data_std = np.mean(sig), np.std(sig)
res_dict.update({f'LabSmean_{labn}': data_mean, f'LabSstd_{labn}': data_std,f'LabSquant_{labn}':data_qt})
#Signal stat for False Positif
FP_mask = (pred[[ind_lab],...]>0) * (targ[[ind_lab],...]==0)
for ind_lab, labn in enumerate(labels_name):
sig = inda[FP_mask].numpy()
if len(sig)>0 : #too small patch ...
data_qt = np.quantile(sig,[0.1, 0.25, 0.5, 0.75, 0.9])
data_mean, data_std = np.mean(sig), np.std(sig)
res_dict.update({f'FPSmean_{labn}': data_mean, f'FPSstd_{labn}': data_std,f'FPSquant_{labn}':data_qt})
#Signal stat for False Negative
FN_mask = (pred[[ind_lab],...]==0) * (targ[[ind_lab],...]>0)
for ind_lab, labn in enumerate(labels_name):
sig = inda[FN_mask].numpy()
if len(sig)>0 : #too small patch ...
data_qt = np.quantile(sig,[0.1, 0.25, 0.5, 0.75, 0.9])
data_mean, data_std = np.mean(sig), np.std(sig)
res_dict.update({f'FNSmean_{labn}': data_mean, f'FNSstd_{labn}': data_std,f'FNSquant_{labn}':data_qt})
df_sig = pd.concat([df_sig, pd.DataFrame([res_dict])])
df_sig.index = pd.RangeIndex(256)
df_one = pd.concat([pd.DataFrame(df_one), df_sig], axis=1) #, ignore_index=True)
if verbose:
print(f'Computed all metric in {timer()-start}')
if isinstance(df_one,dict):
df_one = pd.DataFrame(df_one, index=[0])
return df_one
def load_model(model_path, device):
config = Config(None, None, save_files=False)
model_struct = {'module': 'unet', 'name': 'UNet', 'last_one': False, 'path': model_path, 'device': device}
model_struct = config.parse_model_file(model_struct)
print(f'Loading on model {model_path}')
model, device = config.load_model(model_struct)
return model.eval()
def get_tio_data_loader(fsuj_csv, tio_transform, replicate=1, get_dataset=False,
t1_column_name="vol_name", label_column_name="label_name", sujname_column_name="sujname"):
subject_list = []
for fin_path, flab_path, suj_name in zip(fsuj_csv[t1_column_name], fsuj_csv[label_column_name], fsuj_csv[sujname_column_name]):
fin = tio.ScalarImage(fin_path)
flab = tio.LabelMap(flab_path)
if replicate:
for ii in range(replicate):
thesujname = f'{suj_name}_d{ii+1}'
subject_list.append( tio.Subject({'t1': fin, 'label': flab, 'name': thesujname}) )
else:
thesujname = suj_name
subject_list.append(tio.Subject({'t1': fin, 'label': flab, 'name': thesujname}))
tio_ds = tio.SubjectsDataset(subject_list, transform=tio_transform)
if get_dataset:
return tio_ds
else:
print('12 numworker')
return DataLoader(tio_ds, 1, shuffle=False,num_workers=12, collate_fn=history_collate)
def predic_segmentation(suj, model, df, res_dict, device, labels_name,
selected_label=None, out_dir=None, save_data=True, resample_back=False):
if out_dir is not None:
model_name, sujname = res_dict['model_name'], res_dict['sujname']
out_dir = out_dir + '/' + model_name
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_dir = out_dir + '/' + sujname
if not os.path.exists(out_dir):
os.mkdir(out_dir)
out_name = out_dir + '/metric_' + res_dict['sujname'] + '.csv'
if os.path.exists(out_name):
print(f'skiping {out_name} exists')
return df
target = suj['label']['data'].float().to(device)
data = suj['t1']['data'].float().to(device)
if target.ndim==4: #comes from dataset, so missing batch dim
target = target.unsqueeze(0)
data = data.unsqueeze(0)
with torch.no_grad():
prediction = model(data)
prediction = F.softmax(prediction, dim=1)
res_dict.update( computes_all_metric(prediction, target, labels_name, selected_label=selected_label) )
res_dict = record_history(res_dict, suj)
df_one = pd.DataFrame([res_dict])
df = pd.concat([df, df_one], ignore_index=True)
#save output in nifti files
if out_dir is not None:
if isinstance(suj, tio.Subject):
sujtio = suj
sujtio.add_image(tio.LabelMap(tensor=to_numpy(prediction[0]), affine=to_numpy(suj["t1"]['affine']) ), 'pred')
else:
sujtio = tio.Subject(dict(t1=tio.ScalarImage(tensor=to_numpy(suj["t1"]["data"][0]), affine=to_numpy(suj["t1"]['affine'][0])),
label=tio.LabelMap(tensor=to_numpy(suj["label"]["data"][0]), affine=to_numpy(suj["t1"]['affine'][0])),
pred=tio.LabelMap(tensor=to_numpy(prediction[0]), affine=to_numpy(suj["t1"]['affine'][0]))))
if resample_back:
tresamp = tio.Resample(target= sujtio.t1.path, label_interpolation='bspline')
sujtio = tresamp(sujtio)
thot = tio.OneHot()
label_orig = thot(tio.LabelMap(sujtio.label.path))
if False:
res_dict.update(computes_all_metric(sujtio.pred.data.unsqueeze(0), sujtio.label.data.unsqueeze(0).contiguous(),
labels_name, selected_label=selected_label))
#res_dict = record_history(res_dict, suj)
df_one2 = pd.DataFrame([res_dict])
df_one = pd.concat([df_one, df_one2], ignore_index=True)
df = pd.concat([df, df_one2], ignore_index=True)
res_dict.update(computes_all_metric(sujtio.pred.data.unsqueeze(0), label_orig.data.unsqueeze(0),
labels_name, selected_label=selected_label))
#res_dict = record_history(res_dict, suj)
df_one2 = pd.DataFrame([res_dict])
df_one = pd.concat([df_one, df_one2], ignore_index=True)
df = pd.concat([df, df_one2], ignore_index=True)
if save_data:
#out_name = out_dir + '/data_' + res_dict['sujname'] + '.nii.gz'
out_name = out_dir + '/data.nii.gz'
if not os.path.exists(out_name):
sujtio.t1.save(out_name)
if save_data>1:
#out_name = out_dir + '/label_' + res_dict['sujname'] + '.nii.gz'
out_name = out_dir + '/label.nii.gz'
if not os.path.exists(out_name):
sujtio.label.save(out_name)
#out_name = out_dir + '/pred_' + res_dict['sujname'] + '_M_' + res_dict['model_name'] + '.nii.gz'
out_name = out_dir + '/prediction.nii.gz'
sujtio.pred.save(out_name)
else:
if target.shape[1]>1:
tiohot = tio.OneHot(invert_transform=True)
else:
tiohot = tio.OneHot(invert_transform=True, include='pred')
sujtio = tiohot(sujtio)
out_name = out_dir + '/bin_label_' + res_dict['sujname'] + '.nii.gz'
if not os.path.exists(out_name):
sujtio.label.save(out_name)
out_name = out_dir + '/bin_pred_' + res_dict['sujname'] + '_M_' + res_dict['model_name'] + '.nii.gz'
sujtio.pred.save(out_name)
out_name = out_dir + '/metric_' + res_dict['sujname'] + '.csv'
df_one.to_csv(out_name)
return df
def record_history(info, sample, idx=0): #copy past from run_model
is_batch = not isinstance(sample, tio.Subject)
order = []
history = sample.get('history') if is_batch else sample.history
transforms_metrics = sample.get("transforms_metrics") if is_batch else sample.transforms_metrics
if history is None or len(history) == 0:
return
relevant_history = history[idx] if is_batch else history
#info["history"] = relevant_history
relevant_metrics = transforms_metrics[idx] if is_batch else transforms_metrics
if len(relevant_metrics) == 1 and isinstance(relevant_metrics[0], list):
relevant_metrics = relevant_metrics[0]
info["transforms_metrics"] = relevant_metrics
if len(relevant_history)==1 and isinstance(relevant_history[0], list):
relevant_history = relevant_history[0] #because ListOf transfo to batch make list of list ...
for hist in relevant_history:
if isinstance(hist, dict) :
histo_name = hist['name']
for key, val in hist.items():
if callable(val):
hist[key] = str(val)
str_hist = str( hist )
else:
histo_name = hist.name #arg bad idea to mixt transfo and dict
str_hist = dict()
for name in hist.args_names :
val = getattr(hist, name)
if callable(val):
val = str(val)
str_hist[name] = val
# str_hist = {name: str() if isinstance(getattr(hist, name),funtion) else getattr(hist, name) for name in hist.args_names}
#instead of using str(hist) wich is not correct as a python eval, make a dict of input_param
if f'T_{histo_name}' in info:
histo_name = f'{histo_name}_2'
info[f'T_{histo_name}'] = json.dumps(
str_hist, cls=ArrayTensorJSONEncoder)
order.append(histo_name)
info['transfo_order'] = '_'.join(order)
return info
def get_results_dir(model_type, data_local=True):
if data_local:
resdir = '/data/romain/PVsynth/eval_cnn/baby/'
else:
resdir = '/network/lustre/iss02/cenir/analyse/irm/users/romain.valabregue/PVsynth/eval_cnn/baby'
ress=[]
#ress.append(resdir+'eval_T2_model_5suj_motBigAff_ep30')
if 'eval_T2' in model_type:
ress.append(resdir + 'eval_T2_model_fetaBgT2_hcp_ep1')
ress.append(resdir + 'eval_T2_model_hcpT2_elanext_5suj_BigAff_ep1')
ress.append(resdir + 'eval_T2_model_hcpT2_elanext_5suj_ep1')
ress.append(resdir + 'eval_T2_model_hcpT2_elanext_5suj_Mote30BigAff_ep2')
if 'eval_T1' in model_type:
ress.append(resdir+'eval_T1_model_fetaBgT2_hcp_ep1')
ress.append(resdir+'eval_T1_model_hcpT2_elanext_5suj_BigAff_ep1')
ress.append(resdir+'eval_T1_model_hcpT2_elanext_5suj_ep1')
ress.append(resdir+'eval_T1_model_hcpT2_elanext_5suj_Mote30BigAff_ep2')
for rr in ress:
if not os.path.exists(rr):
print(f'WARNING model {rr} does not exist ')
resname = [os.path.basename(pp) for pp in ress]
return ress, resname