|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "undefined-december", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Demo for using C3S intake catalog\n", |
| 9 | + "\n", |
| 10 | + "Intake Example:\n", |
| 11 | + "https://github.com/intake/intake-examples/blob/master/tutorial/data_scientist.ipynb\n" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": null, |
| 17 | + "id": "perceived-danger", |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "import intake" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "id": "floating-spare", |
| 27 | + "metadata": {}, |
| 28 | + "source": [ |
| 29 | + "## Open remote catalog" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": null, |
| 35 | + "id": "genetic-inflation", |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "cat = intake.open_catalog(\"https://raw.githubusercontent.com/cehbrecht/c3s_34g_manifests/intake/intake/catalogs/c3s.yaml\")\n" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": null, |
| 45 | + "id": "unsigned-wyoming", |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "list(cat)" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": null, |
| 55 | + "id": "cultural-church", |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "print(cat['c3s-cmip6'])" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "id": "excess-decrease", |
| 65 | + "metadata": {}, |
| 66 | + "source": [ |
| 67 | + "## Load catalog for c3s-cmip6\n", |
| 68 | + "Catalogs will be cached locally in `~/.intake/cache`.\n", |
| 69 | + "\n", |
| 70 | + "See: https://intake.readthedocs.io/en/latest/catalog.html?highlight=simplecache#caching-source-files-locally" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "id": "cardiac-level", |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "df = cat['c3s-cmip6'].read()" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "id": "economic-color", |
| 86 | + "metadata": {}, |
| 87 | + "source": [ |
| 88 | + "## Show first datasets" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": null, |
| 94 | + "id": "interim-chassis", |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "df.head()" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "id": "aware-paragraph", |
| 104 | + "metadata": {}, |
| 105 | + "source": [ |
| 106 | + "## Show number of datasets" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "id": "grand-toner", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "df.ds_id.nunique()" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "markdown", |
| 121 | + "id": "adverse-fashion", |
| 122 | + "metadata": {}, |
| 123 | + "source": [ |
| 124 | + "## Define a search function for dataset and time" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": null, |
| 130 | + "id": "broken-registrar", |
| 131 | + "metadata": {}, |
| 132 | + "outputs": [], |
| 133 | + "source": [ |
| 134 | + "def search(df, collection, time=None):\n", |
| 135 | + " # a common search we do in rook\n", |
| 136 | + " start = end = None\n", |
| 137 | + " if time:\n", |
| 138 | + " if \"/\" in time:\n", |
| 139 | + " start, end = time.split(\"/\")\n", |
| 140 | + " start = start.strip()\n", |
| 141 | + " end = end.strip()\n", |
| 142 | + " else:\n", |
| 143 | + " start = time.strip()\n", |
| 144 | + " \n", |
| 145 | + " start = start or \"1800-01-01\"\n", |
| 146 | + " end = end or \"2500-12-31\"\n", |
| 147 | + " \n", |
| 148 | + " sdf = df.fillna({'start_time': '1000-01-01T12:00:00', 'end_time': '3000-12-31T12:00:00'})\n", |
| 149 | + "\n", |
| 150 | + " result = sdf.loc[(sdf.ds_id == collection) & (sdf.end_time >= start) & (sdf.start_time <= end)]\n", |
| 151 | + " return list(result.path.sort_values().to_dict().values())\n", |
| 152 | + " " |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "markdown", |
| 157 | + "id": "close-strap", |
| 158 | + "metadata": {}, |
| 159 | + "source": [ |
| 160 | + "## Search for a dataset with time restrictions" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": null, |
| 166 | + "id": "geographic-passing", |
| 167 | + "metadata": {}, |
| 168 | + "outputs": [], |
| 169 | + "source": [ |
| 170 | + "result = search(\n", |
| 171 | + " df, \n", |
| 172 | + " collection=\"c3s-cmip6.CMIP.SNU.SAM0-UNICON.historical.r1i1p1f1.day.pr.gn.v20190323\",\n", |
| 173 | + " time=\"2000-01-01/2001-12-31\")\n", |
| 174 | + "result" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "id": "received-copyright", |
| 180 | + "metadata": {}, |
| 181 | + "source": [ |
| 182 | + "## Search for dataset with no time axis (fx, fixed fields)" |
| 183 | + ] |
| 184 | + }, |
| 185 | + { |
| 186 | + "cell_type": "code", |
| 187 | + "execution_count": null, |
| 188 | + "id": "rational-concrete", |
| 189 | + "metadata": {}, |
| 190 | + "outputs": [], |
| 191 | + "source": [ |
| 192 | + "df.loc[df.table_id==\"fx\"].ds_id" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "code", |
| 197 | + "execution_count": null, |
| 198 | + "id": "inside-mediterranean", |
| 199 | + "metadata": {}, |
| 200 | + "outputs": [], |
| 201 | + "source": [ |
| 202 | + "collection = df.iloc[29].ds_id\n", |
| 203 | + "collection" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "code", |
| 208 | + "execution_count": null, |
| 209 | + "id": "authorized-spectacular", |
| 210 | + "metadata": {}, |
| 211 | + "outputs": [], |
| 212 | + "source": [ |
| 213 | + "result = search(df, collection=collection, time=\"2000-01-01/2010-12-31\")\n", |
| 214 | + "result" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "markdown", |
| 219 | + "id": "important-machine", |
| 220 | + "metadata": {}, |
| 221 | + "source": [ |
| 222 | + "## Other searches ..." |
| 223 | + ] |
| 224 | + }, |
| 225 | + { |
| 226 | + "cell_type": "code", |
| 227 | + "execution_count": null, |
| 228 | + "id": "considerable-antenna", |
| 229 | + "metadata": {}, |
| 230 | + "outputs": [], |
| 231 | + "source": [ |
| 232 | + "result = df.loc[\n", |
| 233 | + " (df.variable_id==\"tas\") \n", |
| 234 | + " & (df.experiment_id==\"historical\")\n", |
| 235 | + " & (df.table_id==\"day\")\n", |
| 236 | + " & (df.member_id==\"r1i1p1f1\")\n", |
| 237 | + " & (df.institution_id==\"MIROC\")\n", |
| 238 | + "]\n", |
| 239 | + "result.head()" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "code", |
| 244 | + "execution_count": null, |
| 245 | + "id": "ruled-creator", |
| 246 | + "metadata": {}, |
| 247 | + "outputs": [], |
| 248 | + "source": [ |
| 249 | + "result.ds_id.unique()" |
| 250 | + ] |
| 251 | + } |
| 252 | + ], |
| 253 | + "metadata": { |
| 254 | + "kernelspec": { |
| 255 | + "display_name": "Python 3", |
| 256 | + "language": "python", |
| 257 | + "name": "python3" |
| 258 | + }, |
| 259 | + "language_info": { |
| 260 | + "codemirror_mode": { |
| 261 | + "name": "ipython", |
| 262 | + "version": 3 |
| 263 | + }, |
| 264 | + "file_extension": ".py", |
| 265 | + "mimetype": "text/x-python", |
| 266 | + "name": "python", |
| 267 | + "nbconvert_exporter": "python", |
| 268 | + "pygments_lexer": "ipython3", |
| 269 | + "version": "3.9.2" |
| 270 | + } |
| 271 | + }, |
| 272 | + "nbformat": 4, |
| 273 | + "nbformat_minor": 5 |
| 274 | +} |
0 commit comments