-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmadan.py
217 lines (177 loc) · 8.29 KB
/
madan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import random
import sys
import torch.nn as nn
import os
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from dataset.data_loader import GetLoader
from torchvision import datasets
from torchvision import transforms
from models.model_5b import CNNModel, Adver, Classifier
import numpy as np
from test_local import test
source_dataset_name = sys.argv[1]
target_dataset_name = sys.argv[2]
saveName = "CLGE_5b"
resultsFile = os.path.join('.', 'valRes', 'oilPalm', '{}-{}'.format(source_dataset_name, target_dataset_name), '{}.txt'.format(saveName))
res = open(resultsFile, 'w')
source_image_root = os.path.join('.', 'dataset', source_dataset_name)
target_image_root = os.path.join('.', 'dataset', target_dataset_name)
model_root = os.path.join('.', 'models', 'oilPalm', '{}-{}'.format(source_dataset_name, target_dataset_name))
cuda = True
cudnn.benchmark = True
lr = 1e-3
batch_size = 128
image_size = 17
n_epoch = 100
os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[3]
manual_seed = random.randint(1, 10000)
random.seed(manual_seed)
torch.manual_seed(manual_seed)
# load data
img_transform_source = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
img_transform_target = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
source_list = os.path.join(source_image_root, '{}_train_labels.txt'.format(source_dataset_name))
dataset_source = GetLoader(
data_root=os.path.join(source_image_root, 'train'),
data_list=source_list,
transform=img_transform_source
)
dataloader_source = torch.utils.data.DataLoader(
dataset=dataset_source,
batch_size=batch_size,
shuffle=True)
target_list = os.path.join(target_image_root, '{}_train_labels.txt'.format(target_dataset_name))
dataset_target = GetLoader(
data_root=os.path.join(target_image_root, 'train'),
data_list=target_list,
transform=img_transform_target
)
dataloader_target = torch.utils.data.DataLoader(
dataset=dataset_target,
batch_size=batch_size,
shuffle=True)
# load model
if source_dataset_name == "4" or source_dataset_name == "3":
output = 3
else:
output = 4
my_net = CNNModel()
ad_net = Adver()
cla_net = Classifier(output_num=output)
# setup optimizer
optimizer = optim.Adam(my_net.parameters(), lr=lr)
loss_class = torch.nn.CrossEntropyLoss()
# loss_domain = torch.nn.NLLLoss()
loss_domain = torch.nn.BCELoss()
if cuda:
my_net = my_net.cuda()
ad_net = ad_net.cuda()
cla_net = cla_net.cuda()
loss_class = loss_class.cuda()
loss_domain = loss_domain.cuda()
for p in my_net.parameters():
p.requires_grad = True
# training
def Entropy(x, attention_global):
mask = x.ge(0.000001)
# print mask.cpu().data.numpy()
mask_out = torch.masked_select(x, mask)
attention_global_out = torch.masked_select(attention_global, mask)
# print mask_out.cpu().data.numpy()
entropy = -(torch.sum(attention_global_out.data * mask_out * torch.log(mask_out)))
# print entropy.cpu().data.numpy()
return entropy / float(x.size(0))
def H(x):
return -x * torch.log2(x + 1e-10) - (1 - x) * torch.log2(1 - x + 1e-10)
for epoch in range(n_epoch):
len_dataloader = min(len(dataloader_source), len(dataloader_target))
data_source_iter = iter(dataloader_source)
data_target_iter = iter(dataloader_target)
i = 0
while i < len_dataloader:
p = float(i + epoch * len_dataloader) / n_epoch / len_dataloader
alpha = 2. / (1. + np.exp(-10 * p)) - 1
# training model using source data
data_source = data_source_iter.next()
s_img, s_label = data_source
my_net.zero_grad()
batch_size = len(s_label)
# print(len(s_label))
one_tensor = torch.ones(batch_size, 1)
input_img = torch.FloatTensor(batch_size, 3, image_size, image_size)
class_label = torch.LongTensor(batch_size)
domain_label = torch.zeros(batch_size)
domain_label = domain_label.long()
# domain_label = torch.from_numpy(np.array([[0]] * batch_size)).float()
if cuda:
s_img = s_img.cuda()
s_label = s_label.cuda()
input_img = input_img.cuda()
class_label = class_label.cuda()
domain_label = domain_label.cuda()
one_tensor = one_tensor.cuda()
input_img.resize_as_(s_img).copy_(s_img)
class_label.resize_as_(s_label).copy_(s_label)
# print(input_img.size())
# class_output_source, domain_output = my_net(input_data=input_img, alpha=alpha)
s_feature = my_net(input_data=input_img, alpha=alpha)
s_local_probability = ad_net(s_feature, alpha)
s_local_out = H(s_local_probability)
s_global_feature = (one_tensor.data + s_local_out.data) * s_feature
s_class_output = cla_net(s_global_feature)
s_class_output_softmax = nn.Softmax(dim=1)(s_class_output)
err_s_label = loss_class(s_class_output, class_label)
err_s_local = loss_domain(s_local_probability.float().view(-1), domain_label.float().view(-1))
s_global_probability = ad_net(s_global_feature, alpha)
err_s_global = loss_domain(s_global_probability.float().view(-1), domain_label.float().view(-1))
s_global_out = H(s_global_probability)
s_global_attention = 1 + s_global_out.data
err_s_entropy = Entropy(s_class_output_softmax, s_global_attention)
# training model using target data
data_target = data_target_iter.next()
t_img, _ = data_target
batch_size = len(t_img)
input_img = torch.FloatTensor(batch_size, 3, image_size, image_size)
domain_label = torch.ones(batch_size)
domain_label = domain_label.long()
one_tensor = torch.ones(batch_size, 1)
if cuda:
t_img = t_img.cuda()
input_img = input_img.cuda()
domain_label = domain_label.cuda()
one_tensor = one_tensor.cuda()
input_img.resize_as_(t_img).copy_(t_img)
t_feature = my_net(input_data=input_img, alpha=alpha)
t_local_probability = ad_net(t_feature, alpha)
t_local_out = H(t_local_probability)
t_global_feature = (one_tensor.data + t_local_out.data) * t_feature
t_class_output = cla_net(t_global_feature)
t_class_output_softmax = nn.Softmax(dim=1)(t_class_output)
err_t_local = loss_domain(t_local_probability.float().view(-1), domain_label.float().view(-1))
t_global_probability = ad_net(t_global_feature, alpha)
err_t_global = loss_domain(t_global_probability.float().view(-1), domain_label.float().view(-1))
t_global_out = H(t_global_probability)
t_global_attention = 1 + t_global_out.data
err_t_entropy = Entropy(t_class_output_softmax, t_global_attention)
err = (err_t_local + err_s_local) * 0.1 + err_s_label + (err_t_entropy + err_s_entropy) * 1 + (err_s_global + err_t_global) * 0.1
err.backward()
optimizer.step()
i += 1
print('epoch: %d, [iter: %d / all %d], err: %f, err_s_label: %f, err_s_local: %f, err_t_local: %f, err_s_entropy: %f, err_t_entropy: %f, err_s_global: %f, err_t_global: %f' % (epoch, i, len_dataloader, err.cpu().data.numpy(), err_s_label.cpu().data.numpy(), err_s_local.cpu().data.numpy(), err_t_local.cpu().data.numpy(), err_s_entropy.cpu().data.numpy(), err_t_entropy.cpu().data.numpy(), err_s_global.cpu().data.numpy(), err_t_global.cpu().data.numpy()))
if (epoch + 1) % 10 == 0:
torch.save(my_net, '{}/{}-fea-{}.pth'.format(model_root, saveName, epoch + 1))
torch.save(cla_net, '{}/{}-cla-{}.pth'.format(model_root, saveName, epoch + 1))
sourceAcc = test(source_dataset_name, epoch, '{}-{}'.format(source_dataset_name, target_dataset_name), '{}/{}-fea-{}.pth'.format(model_root, saveName, epoch + 1), '{}/{}-cla-{}.pth'.format(model_root, saveName, epoch + 1))
targetAcc = test(target_dataset_name, epoch, '{}-{}'.format(source_dataset_name, target_dataset_name), '{}/{}-fea-{}.pth'.format(model_root, saveName, epoch + 1), '{}/{}-cla-{}.pth'.format(model_root, saveName, epoch + 1))
res.write('source acc: {}, target acc: {}\n'.format(sourceAcc, targetAcc))
print('done')