31
31
crate :: Miniscript ,
32
32
crate :: Tap ,
33
33
std:: cmp:: Reverse ,
34
+ std:: collections:: BTreeMap ,
34
35
std:: collections:: { BinaryHeap , HashMap } ,
35
36
std:: sync:: Arc ,
36
37
} ;
@@ -41,6 +42,14 @@ use crate::miniscript::limits::{LOCKTIME_THRESHOLD, SEQUENCE_LOCKTIME_TYPE_FLAG}
41
42
use crate :: miniscript:: types:: extra_props:: TimelockInfo ;
42
43
use crate :: { errstr, Error , ForEach , ForEachKey , MiniscriptKey } ;
43
44
45
+ /// [`TapTree`] -> ([`Policy`], satisfaction cost) cache
46
+ #[ cfg( feature = "compiler" ) ]
47
+ type PolicyTapCache < Pk > = BTreeMap < TapTree < Pk > , ( Policy < Pk > , f64 ) > ;
48
+
49
+ /// [`Miniscript`] -> leaf probability in policy cache
50
+ #[ cfg( feature = "compiler" ) ]
51
+ type MsTapCache < Pk > = BTreeMap < TapTree < Pk > , f64 > ;
52
+
44
53
/// Concrete policy which corresponds directly to a Miniscript structure,
45
54
/// and whose disjunctions are annotated with satisfaction probabilities
46
55
/// to assist the compiler
@@ -283,6 +292,69 @@ impl<Pk: MiniscriptKey> Policy<Pk> {
283
292
}
284
293
}
285
294
295
+ /// Compile [`Policy`] into a [`TapTree Descriptor`][`Descriptor::Tr`]
296
+ ///
297
+ ///
298
+ /// This follows the heuristic as described in [`with_huffman_tree_eff`]
299
+ #[ cfg( feature = "compiler" ) ]
300
+ pub fn compile_tr ( & self , unspendable_key : Option < Pk > ) -> Result < Descriptor < Pk > , Error > {
301
+ self . is_valid ( ) ?; // Check for validity
302
+ match self . is_safe_nonmalleable ( ) {
303
+ ( false , _) => Err ( Error :: from ( CompilerError :: TopLevelNonSafe ) ) ,
304
+ ( _, false ) => Err ( Error :: from (
305
+ CompilerError :: ImpossibleNonMalleableCompilation ,
306
+ ) ) ,
307
+ _ => {
308
+ let ( internal_key, policy) = self . clone ( ) . extract_key ( unspendable_key) ?;
309
+ let tree = Descriptor :: new_tr (
310
+ internal_key,
311
+ match policy {
312
+ Policy :: Trivial => None ,
313
+ policy => {
314
+ let mut policy_cache = PolicyTapCache :: < Pk > :: new ( ) ;
315
+ let mut ms_cache = MsTapCache :: < Pk > :: new ( ) ;
316
+ // Obtain the policy compilations and populate the respective caches for
317
+ // creating the huffman tree later on
318
+ let vec_policies: Vec < _ > = policy. to_tapleaf_prob_vec ( 1.0 ) ;
319
+ let mut leaf_compilations: Vec < Arc < Miniscript < Pk , Tap > > > = vec ! [ ] ;
320
+ for ( prob, pol) in vec_policies {
321
+ // policy corresponding to the key (replaced by unsatisfiable) is skipped
322
+ if pol == Policy :: Unsatisfiable {
323
+ continue ;
324
+ }
325
+ let compilation = compiler:: best_compilation_sat :: < Pk , Tap > ( & pol) ?;
326
+ compilation. 0 . sanity_check ( ) ?;
327
+ let leaf_comp = TapTree :: Leaf ( compilation. 0 . clone ( ) ) ;
328
+ policy_cache. insert (
329
+ TapTree :: Leaf ( Arc :: clone ( & compilation. 0 ) ) ,
330
+ ( pol. clone ( ) , compilation. 1 ) , // (policy, sat_cost)
331
+ ) ;
332
+ // In case we hit duplication compilations for sub-policies, we add
333
+ // their respective probabilities without pushing the node back again.
334
+ match ms_cache. get ( & leaf_comp) {
335
+ Some ( p) => {
336
+ ms_cache. insert ( leaf_comp, p + prob) ;
337
+ }
338
+ None => {
339
+ ms_cache. insert ( leaf_comp, prob) ;
340
+ leaf_compilations. push ( compilation. 0 ) ;
341
+ }
342
+ } ;
343
+ }
344
+ let taptree = with_huffman_tree_eff (
345
+ leaf_compilations,
346
+ & mut policy_cache,
347
+ & mut ms_cache,
348
+ ) ?;
349
+ Some ( taptree)
350
+ }
351
+ } ,
352
+ ) ?;
353
+ Ok ( tree)
354
+ }
355
+ }
356
+ }
357
+
286
358
/// Compile the descriptor into an optimized `Miniscript` representation
287
359
#[ cfg( feature = "compiler" ) ]
288
360
pub fn compile < Ctx : ScriptContext > ( & self ) -> Result < Miniscript < Pk , Ctx > , CompilerError > {
@@ -825,6 +897,50 @@ where
825
897
}
826
898
}
827
899
900
+ /// Average satisfaction cost for [`TapTree`] with the leaf [`Miniscript`] nodes at some depth having
901
+ /// probabilities corresponding to the (sub)policies they're compiled from.
902
+ ///
903
+ /// Average satisfaction cost for [`TapTree`] over script-spend paths is probability times
904
+ /// the size of control block at depth + the script size.
905
+ #[ cfg( feature = "compiler" ) ]
906
+ fn at_depth_taptree_cost < Pk : MiniscriptKey > (
907
+ tr : & TapTree < Pk > ,
908
+ ms_cache : & MsTapCache < Pk > ,
909
+ policy_cache : & PolicyTapCache < Pk > ,
910
+ depth : u32 ,
911
+ ) -> f64 {
912
+ match * tr {
913
+ TapTree :: Tree ( ref l, ref r) => {
914
+ at_depth_taptree_cost ( l, ms_cache, policy_cache, depth + 1 )
915
+ + at_depth_taptree_cost ( r, ms_cache, policy_cache, depth + 1 )
916
+ }
917
+ TapTree :: Leaf ( ref ms) => {
918
+ let prob = ms_cache
919
+ . get ( & TapTree :: Leaf ( Arc :: clone ( ms) ) )
920
+ . expect ( "Probability should exist for the given ms" ) ;
921
+ let sat_cost = policy_cache
922
+ . get ( & TapTree :: Leaf ( Arc :: clone ( ms) ) )
923
+ . expect ( "Cost should exist for the given ms" )
924
+ . 1 ;
925
+ prob * ( ms. script_size ( ) as f64 + sat_cost + 32.0 * depth as f64 )
926
+ }
927
+ }
928
+ }
929
+
930
+ /// Average net satisfaction cost for [`TapTree`] with the leaf [`Miniscript`] nodes having
931
+ /// probabilities corresponding to the (sub)policies they're compiled from.
932
+ ///
933
+ /// Average satisfaction cost for [`TapTree`] over script-spend paths is probability times
934
+ /// the size of control block + the script size.
935
+ #[ cfg( feature = "compiler" ) ]
936
+ fn taptree_cost < Pk : MiniscriptKey > (
937
+ tr : & TapTree < Pk > ,
938
+ ms_cache : & MsTapCache < Pk > ,
939
+ policy_cache : & PolicyTapCache < Pk > ,
940
+ ) -> f64 {
941
+ at_depth_taptree_cost ( tr, ms_cache, policy_cache, 0 )
942
+ }
943
+
828
944
/// Create a Huffman Tree from compiled [Miniscript] nodes
829
945
#[ cfg( feature = "compiler" ) ]
830
946
fn with_huffman_tree < Pk : MiniscriptKey > (
@@ -855,3 +971,122 @@ fn with_huffman_tree<Pk: MiniscriptKey>(
855
971
. 1 ;
856
972
Ok ( node)
857
973
}
974
+
975
+ /// Create a [`TapTree`] from the a list of [`Miniscript`]s having corresponding satisfaction
976
+ /// cost and probability.
977
+ ///
978
+ /// Given that satisfaction probability and cost for each script is known, constructing the
979
+ /// [`TapTree`] as a huffman tree over the net cost (as defined in [`taptree_cost`]) is
980
+ /// the optimal one.
981
+ /// For finding the optimal policy to taptree compilation, we are required to search
982
+ /// exhaustively over all policies which have the same leaf policies. Owing to the exponential
983
+ /// blow-up for such a method, we use a heuristic where we augment the merge to check if the
984
+ /// compilation of a new (sub)policy into a [`TapTree::Leaf`] with the policy corresponding to
985
+ /// the nodes as children is better than [`TapTree::Tree`] with the nodes as children.
986
+ ///
987
+ /// # Assumption
988
+ ///
989
+ /// We have no two duplicate policies/ compilations in the given list.
990
+ /// In any other case, we'd need to re-engineer the node-merging algorithm here to gracefully
991
+ /// handle duplicate intermediate policies/ miniscript compilations by dis-disambiguating them.
992
+ #[ cfg( feature = "compiler" ) ]
993
+ fn with_huffman_tree_eff < Pk : MiniscriptKey > (
994
+ ms : Vec < Arc < Miniscript < Pk , Tap > > > ,
995
+ policy_cache : & mut PolicyTapCache < Pk > ,
996
+ ms_cache : & mut MsTapCache < Pk > ,
997
+ ) -> Result < TapTree < Pk > , Error > {
998
+ let mut node_weights = BinaryHeap :: < ( Reverse < OrdF64 > , OrdF64 , TapTree < Pk > ) > :: new ( ) ; // (cost, branch_prob, tree)
999
+ // Populate the heap with each `ms` as a TapLeaf, and the respective cost fields
1000
+ for script in ms {
1001
+ let wt = OrdF64 ( taptree_cost (
1002
+ & TapTree :: Leaf ( Arc :: clone ( & script) ) ,
1003
+ ms_cache,
1004
+ policy_cache,
1005
+ ) ) ;
1006
+ let prob = OrdF64 (
1007
+ * ms_cache
1008
+ . get ( & TapTree :: Leaf ( Arc :: clone ( & script) ) )
1009
+ . expect ( "Probability should exist for the given ms" ) ,
1010
+ ) ;
1011
+ node_weights. push ( ( Reverse ( wt) , prob, TapTree :: Leaf ( Arc :: clone ( & script) ) ) ) ;
1012
+ }
1013
+ if node_weights. is_empty ( ) {
1014
+ return Err ( errstr ( "Empty Miniscript compilation" ) ) ;
1015
+ }
1016
+ while node_weights. len ( ) > 1 {
1017
+ // Obtain the two least-weighted nodes from the heap for merging
1018
+ let ( _prev_cost1, p1, ms1) = node_weights. pop ( ) . expect ( "len must atleast be two" ) ;
1019
+ let ( _prev_cost2, p2, ms2) = node_weights. pop ( ) . expect ( "len must atleast be two" ) ;
1020
+
1021
+ // Retrieve the respective policies
1022
+ let ( left_pol, _c1) = policy_cache
1023
+ . get ( & ms1)
1024
+ . ok_or_else ( || errstr ( "No corresponding policy found" ) ) ?
1025
+ . clone ( ) ;
1026
+
1027
+ let ( right_pol, _c2) = policy_cache
1028
+ . get ( & ms2)
1029
+ . ok_or_else ( || errstr ( "No corresponding policy found" ) ) ?
1030
+ . clone ( ) ;
1031
+
1032
+ // Create a parent policy with the respective node TapTrees as children (with odds
1033
+ // weighted approximately in ratio to their probabilities)
1034
+ let parent_policy = Policy :: Or ( vec ! [
1035
+ ( ( p1. 0 * 1e4 ) . round( ) as usize , left_pol) ,
1036
+ ( ( p2. 0 * 1e4 ) . round( ) as usize , right_pol) ,
1037
+ ] ) ;
1038
+
1039
+ // Obtain compilation for the parent policy
1040
+ let ( parent_compilation, parent_sat_cost) =
1041
+ compiler:: best_compilation_sat :: < Pk , Tap > ( & parent_policy) ?;
1042
+ parent_compilation. sanity_check ( ) ?;
1043
+
1044
+ // Probability of the parent node being satisfied equals the probability of either
1045
+ // nodes to be satisfied. Since we weight the odds appropriately, the children nodes
1046
+ // still have approximately the same probabilities
1047
+ let p = p1. 0 + p2. 0 ;
1048
+ // Inserting parent policy's weights (sat_cost and probability) for later usage, assuming
1049
+ // we don't hit duplicate policy/ compilation here.
1050
+ ms_cache. insert ( TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) , p) ;
1051
+ policy_cache. insert (
1052
+ TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) ,
1053
+ ( parent_policy. clone ( ) , parent_sat_cost) ,
1054
+ ) ;
1055
+
1056
+ let parent_cost = OrdF64 ( taptree_cost (
1057
+ & TapTree :: Leaf ( Arc :: clone ( & parent_compilation) ) ,
1058
+ ms_cache,
1059
+ policy_cache,
1060
+ ) ) ;
1061
+ let children_cost = OrdF64 (
1062
+ taptree_cost ( & ms1, ms_cache, policy_cache) + taptree_cost ( & ms2, ms_cache, policy_cache) ,
1063
+ ) ;
1064
+
1065
+ // Merge the children nodes into either TapLeaf of the parent compilation or
1066
+ // TapTree children nodes accordingly
1067
+ node_weights. push ( if parent_cost > children_cost {
1068
+ ms_cache. insert (
1069
+ TapTree :: Tree ( Arc :: from ( ms1. clone ( ) ) , Arc :: from ( ms2. clone ( ) ) ) ,
1070
+ p,
1071
+ ) ;
1072
+ policy_cache. insert (
1073
+ TapTree :: Tree ( Arc :: from ( ms1. clone ( ) ) , Arc :: from ( ms2. clone ( ) ) ) ,
1074
+ ( parent_policy, parent_sat_cost) ,
1075
+ ) ;
1076
+ (
1077
+ Reverse ( children_cost) ,
1078
+ OrdF64 ( p) ,
1079
+ TapTree :: Tree ( Arc :: from ( ms1) , Arc :: from ( ms2) ) ,
1080
+ )
1081
+ } else {
1082
+ let node = TapTree :: Leaf ( Arc :: from ( parent_compilation) ) ;
1083
+ ( Reverse ( parent_cost) , OrdF64 ( p) , node)
1084
+ } ) ;
1085
+ }
1086
+ debug_assert ! ( node_weights. len( ) == 1 ) ;
1087
+ let node = node_weights
1088
+ . pop ( )
1089
+ . expect ( "huffman tree algorithm is broken" )
1090
+ . 2 ;
1091
+ Ok ( node)
1092
+ }
0 commit comments