@@ -3385,8 +3385,7 @@ def check_reclayer_optimize_out(subnet_layer_dict, other_subnet_layers=None, sha
33853385 rec_layer_dict ["unit" ].update (other_subnet_layers )
33863386 config = Config ({
33873387 "debug_print_layer_output_template" : True ,
3388- "num_inputs" : n_in ,
3389- "num_outputs" : n_out
3388+ "extern_data" : {"data" : {"dim" : n_in }},
33903389 })
33913390 from returnn .tf .layers .rec import _SubnetworkRecCell
33923391 with make_scope () as session :
@@ -3463,6 +3462,40 @@ def test_reclayer_optimize_out_selfatt_left():
34633462 "class" : "self_attention" , "attention_left_only" : True , "num_heads" : 2 , "total_key_dim" : 6 , "n_out" : 18 })
34643463
34653464
3465+ def test_reclayer_optimize_out_cum_concat_gen_self_att ():
3466+ new_dim = DimensionTag (kind = DimensionTag .Types .Spatial , description = "cum_concat_new_dim" )
3467+ n_key = 5
3468+ n_value = 7
3469+ check_reclayer_optimize_out (
3470+ {"class" : "linear" , "from" : "att" , "activation" : None },
3471+ {
3472+ # This is very much the vanilla self attention,
3473+ # implemented via the new generic way.
3474+ # See https://github.com/rwth-i6/returnn/issues/391 for a long discussion.
3475+ # Commented shapes are always for the layers inside the loop (not optimized).
3476+ "qkv" : {"class" : "linear" , "from" : "data:source" , "activation" : None , "n_out" : n_key * 2 + n_value }, # [B,2*K+V]
3477+ "qkv_split" : {"class" : "split" , "from" : "qkv" , "size_splits" : [n_key , n_key , n_value ]},
3478+ "q" : {"class" : "copy" , "from" : "qkv_split/0" }, # inside [B,K]. optimized out [T,B,K]
3479+ "k" : {"class" : "copy" , "from" : "qkv_split/1" }, # inside [B,K]. optimized out [T,B,K]
3480+ "v" : {"class" : "copy" , "from" : "qkv_split/2" }, # inside [B,V]. optimized out [T,B,V]
3481+ # cum_concat here. Note that the optimized-out shape is not as you might expect [T,max(t),B,K],
3482+ # but instead using the optimized format, with extended dyn size on the special dim tag,
3483+ # i.e. [t*,B,K], representing [T,t*,B,K].
3484+ "k_accum" : {"class" : "cum_concat" , "new_dim" : new_dim , "from" : "k" }, # inside [t,B,K]. opt out [t*,B,K]
3485+ "v_accum" : {"class" : "cum_concat" , "new_dim" : new_dim , "from" : "v" }, # inside [t,B,V]. opt out [t*,B,K]
3486+ "energy" : {
3487+ "class" : "dot" , "from" : ["q" , "k_accum" ],
3488+ "red1" : "static:-1" , "red2" : "static:-1" ,
3489+ "var1" : None , "var2" : new_dim }, # inside [B,t]. optimized out [T,B,t*]
3490+ "att_weights" : {
3491+ "class" : "softmax_over_spatial" , "from" : "energy" , "axis" : new_dim }, # inside [B,t]. opt out [T,B,t*]
3492+ "att" : {
3493+ "class" : "dot" , "from" : ["att_weights" , "v_accum" ],
3494+ "red1" : new_dim , "red2" : new_dim ,
3495+ "var1" : None , "var2" : "static:-1" }, # inside [B,V]. opt out [T,B,V]
3496+ })
3497+
3498+
34663499def test_reclayer_optimize_out_dot ():
34673500 # Used for multi-head dot-attention.
34683501 AttNumHeads = 4
0 commit comments