-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdefault.yaml
46 lines (40 loc) · 1.18 KB
/
default.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
common:
fp16: true
disable_tqdm: true # set true when using nohup
seed: 0
path:
checkpoint: "models/s5-hubert"
quantizer1: "models/s5-hubert/quantizer1.joblib"
quantizer2: "models/s5-hubert/quantizer2.npy"
segment_dir: "segments/s5-hubert"
result: "results/s5-hubert.json"
dataset:
root: "data" # ${root}/LibriSpeech/train-clean-100, train-clean-360, ...
download: false
max_sample_size: 80160 # 5.01 [s]
train_file: "src/sdhubert/files/librispeech_train_10Ksubset.txt"
dev_file: "src/sdhubert/files/librispeech_val.txt"
test_file: "src/sdhubert/files/librispeech_test.txt"
dev_alignment: "src/sdhubert/files/librispeech_syllable_val.json"
test_alignment: "src/sdhubert/files/librispeech_syllable_test.json"
dataloader:
batch_size: 72 # work with single 24GB VRAM GPU
num_workers: 30
model:
model_type: "s5hubert"
model_name_or_path: "facebook/hubert-base-ls960"
init_last_layer: 3
head_out_size: 256
head_hidden_size: 2048
ema_decay: 0.999
segmentation_layer: 8
optim:
epoch: 15
lr: 0.0001
lr_min: 0.00001
stage_ratio: [0.03, 0.47, 0.50] # tri-stage lr schedule
weight_decay: 0.01
max_norm: null
n_clusters:
step1: 16384
step2: 4096