-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
211 lines (179 loc) · 7.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import time
import json
import torch
import random
from utils import *
from config import *
from tqdm import tqdm
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import Dataset, DataLoader
from transformers import GPT2Config, get_scheduler
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
random.seed(42)
batch_size = torch.cuda.device_count()
patchilizer = Patchilizer()
patch_config = GPT2Config(num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
vocab_size=1)
char_config = GPT2Config(num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE,
max_position_embeddings=PATCH_SIZE,
vocab_size=128)
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
# print parameter number
print("Parameter Number: "+str(sum(p.numel() for p in model.parameters() if p.requires_grad)))
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
scaler = GradScaler()
is_autocast = True
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
def collate_batch(batch):
input_patches = []
for input_patch in batch:
input_patches.append(input_patch.reshape(-1))
input_patches = torch.nn.utils.rnn.pad_sequence(input_patches, batch_first=True, padding_value=0)
return input_patches.to(device)
def split_data(data, eval_ratio=0.1):
random.shuffle(data)
split_idx = int(len(data)*eval_ratio)
eval_set = data[:split_idx]
train_set = data[split_idx:]
return train_set, eval_set
class MyDataset(Dataset):
def __init__(self, items):
self.texts = []
for item in tqdm(items):
text = item['control code']+"\n".join(item['abc notation'].split('\n')[1:])
input_patch = patchilizer.encode(text, add_special_patches=True)
input_patch = torch.tensor(input_patch)
if torch.sum(input_patch)!=0:
self.texts.append(input_patch)
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
return self.texts[idx]
# call model with a batch of input
def process_one_batch(batch):
input_patches = batch
loss = model(input_patches).loss
return loss.mean()
# do one epoch for training
def train_epoch():
tqdm_train_set = tqdm(train_set)
total_train_loss = 0
iter_idx = 1
model.train()
for batch in tqdm_train_set:
try:
if is_autocast:
with autocast():
loss = process_one_batch(batch)
if loss==None or torch.isnan(loss).item():
continue
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss = process_one_batch(batch)
if loss==None or torch.isnan(loss).item():
continue
loss.backward()
optimizer.step()
except RuntimeError as exception:
if "memory" in str(exception):
print(str(exception))
if hasattr(torch.cuda, 'empty_cache'):
torch.cuda.empty_cache()
continue
else:
raise exception
lr_scheduler.step()
model.zero_grad(set_to_none=True)
total_train_loss += loss.item()
tqdm_train_set.set_postfix({'train_loss': total_train_loss / iter_idx})
iter_idx += 1
return total_train_loss / (iter_idx-1)
# do one epoch for eval
def eval_epoch():
tqdm_eval_set = tqdm(eval_set)
total_eval_loss = 0
iter_idx = 1
model.eval()
# Evaluate data for one epoch
for batch in tqdm_eval_set:
with torch.no_grad():
loss = process_one_batch(batch)
if loss==None or torch.isnan(loss).item():
continue
total_eval_loss += loss.item()
tqdm_eval_set.set_postfix({'eval_loss': total_eval_loss / iter_idx})
iter_idx += 1
return total_eval_loss / (iter_idx-1)
# train and eval
if __name__ == "__main__":
# load data
with open('data.json') as f:
print("Loading Data...")
data = json.load(f)
train_set, eval_set = split_data(data)
data = []
train_set = DataLoader(MyDataset(train_set), batch_size=batch_size, collate_fn=collate_batch, shuffle=True)
eval_set = DataLoader(MyDataset(eval_set), batch_size=batch_size, collate_fn=collate_batch, shuffle=True)
lr_scheduler = get_scheduler(
name="cosine",
optimizer=optimizer,
num_warmup_steps=NUM_EPOCHS * len(train_set) / 10,
num_training_steps=NUM_EPOCHS * len(train_set),
)
if LOAD_FROM_CHECKPOINT and os.path.exists('weights.pth'):
checkpoint = torch.load('weights.pth')
if torch.cuda.device_count() > 1:
model.module.load_state_dict(checkpoint['model'])
else:
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_sched'])
pre_epoch = checkpoint['epoch']
best_epoch = checkpoint['best_epoch']
min_eval_loss = checkpoint['min_eval_loss']
print("Successfully Loaded Checkpoint from Epoch %d" % pre_epoch)
else:
pre_epoch = 0
best_epoch = 0
min_eval_loss = 100
model = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=LEARNING_RATE)
for epoch in range(1, NUM_EPOCHS+1-pre_epoch):
epoch += pre_epoch
print('-' * 21 + "Epoch " + str(epoch) + '-' * 21)
train_loss = train_epoch()
eval_loss = eval_epoch()
with open('logs.txt','a') as f:
f.write("Epoch " + str(epoch) + "\ntrain_loss: " + str(train_loss) + "\neval_loss: " +str(eval_loss) + "\ntime: " + time.asctime(time.localtime(time.time())) + "\n\n")
if eval_loss < min_eval_loss:
best_epoch = epoch
min_eval_loss = eval_loss
if torch.cuda.device_count() > 1:
checkpoint = {
'model': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_sched': lr_scheduler.state_dict(),
'epoch': epoch,
'best_epoch': best_epoch,
'min_eval_loss': min_eval_loss}
else:
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_sched': lr_scheduler.state_dict(),
'epoch': epoch,
'best_epoch': best_epoch,
'min_eval_loss': min_eval_loss}
torch.save(checkpoint, 'weights.pth')
print("Best Eval Epoch : "+str(best_epoch))
print("Min Eval Loss : "+str(min_eval_loss))