-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
255 lines (216 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import re
import torch
import random
from config import *
from unidecode import unidecode
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
from transformers import GPT2Model, GPT2LMHeadModel, PreTrainedModel
class Patchilizer:
"""
A class for converting music bars to patches and vice versa.
"""
def __init__(self):
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
self.regexPattern = '(' + '|'.join(map(re.escape, self.delimiters)) + ')'
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
def split_bars(self, body):
"""
Split a body of music into individual bars.
"""
bars = re.split(self.regexPattern, ''.join(body))
bars = list(filter(None, bars)) # remove empty strings
if bars[0] in self.delimiters:
bars[1] = bars[0] + bars[1]
bars = bars[1:]
bars = [bars[i * 2] + bars[i * 2 + 1] for i in range(len(bars) // 2)]
return bars
def bar2patch(self, bar, patch_size=PATCH_SIZE):
"""
Convert a bar into a patch of specified length.
"""
patch = [self.bos_token_id] + [ord(c) for c in bar] + [self.eos_token_id]
patch = patch[:patch_size]
patch += [self.pad_token_id] * (patch_size - len(patch))
return patch
def patch2bar(self, patch):
"""
Convert a patch into a bar.
"""
return ''.join(chr(idx) if idx > self.eos_token_id else '' for idx in patch if idx != self.eos_token_id)
def encode(self, abc_code, patch_length=PATCH_LENGTH, patch_size=PATCH_SIZE, add_special_patches=False):
"""
Encode music into patches of specified length.
"""
lines = unidecode(abc_code).split('\n')
lines = list(filter(None, lines)) # remove empty lines
body = ""
patches = []
for line in lines:
if len(line) > 1 and ((line[0].isalpha() and line[1] == ':') or line.startswith('%%score')):
if body:
bars = self.split_bars(body)
patches.extend(self.bar2patch(bar + '\n' if idx == len(bars) - 1 else bar, patch_size)
for idx, bar in enumerate(bars))
body = ""
patches.append(self.bar2patch(line + '\n', patch_size))
else:
body += line + '\n'
if body:
patches.extend(self.bar2patch(bar, patch_size) for bar in self.split_bars(body))
if add_special_patches:
bos_patch = [self.bos_token_id] * (patch_size-1) + [self.eos_token_id]
eos_patch = [self.bos_token_id] + [self.eos_token_id] * (patch_size-1)
patches = [bos_patch] + patches + [eos_patch]
return patches[:patch_length]
def decode(self, patches):
"""
Decode patches into music.
"""
return ''.join(self.patch2bar(patch) for patch in patches)
class PatchLevelDecoder(PreTrainedModel):
"""
An Patch-level Decoder model for generating patch features in an auto-regressive manner.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, config):
super().__init__(config)
self.patch_embedding = torch.nn.Linear(PATCH_SIZE * 128, config.n_embd)
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
self.base = GPT2Model(config)
def forward(self, patches: torch.Tensor) -> torch.Tensor:
"""
The forward pass of the patch-level decoder model.
:param patches: the patches to be encoded
:return: the encoded patches
"""
patches = torch.nn.functional.one_hot(patches, num_classes=128).float()
patches = patches.reshape(len(patches), -1, PATCH_SIZE * 128)
patches = self.patch_embedding(patches.to(self.device))
return self.base(inputs_embeds=patches)
class CharLevelDecoder(PreTrainedModel):
"""
A Char-level Decoder model for generating the characters within each bar patch sequentially.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, config):
super().__init__(config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.base = GPT2LMHeadModel(config)
def forward(self, encoded_patches: torch.Tensor, target_patches: torch.Tensor, patch_sampling_batch_size: int):
"""
The forward pass of the char-level decoder model.
:param encoded_patches: the encoded patches
:param target_patches: the target patches
:return: the decoded patches
"""
# preparing the labels for model training
target_masks = target_patches == self.pad_token_id
labels = target_patches.clone().masked_fill_(target_masks, -100)
# masking the labels for model training
target_masks = torch.ones_like(labels)
target_masks = target_masks.masked_fill_(labels == -100, 0)
# select patches
if patch_sampling_batch_size!=0 and patch_sampling_batch_size<target_patches.shape[0]:
indices = list(range(len(target_patches)))
random.shuffle(indices)
selected_indices = sorted(indices[:patch_sampling_batch_size])
target_patches = target_patches[selected_indices,:]
target_masks = target_masks[selected_indices,:]
encoded_patches = encoded_patches[selected_indices,:]
labels = labels[selected_indices,:]
# get input embeddings
inputs_embeds = torch.nn.functional.embedding(target_patches, self.base.transformer.wte.weight)
# concatenate the encoded patches with the input embeddings
inputs_embeds = torch.cat((encoded_patches.unsqueeze(1), inputs_embeds[:,1:,:]), dim=1)
return self.base(inputs_embeds=inputs_embeds,
attention_mask=target_masks,
labels=labels)
def generate(self, encoded_patch: torch.Tensor, tokens: torch.Tensor):
"""
The generate function for generating a patch based on the encoded patch and already generated tokens.
:param encoded_patch: the encoded patch
:param tokens: already generated tokens in the patch
:return: the probability distribution of next token
"""
encoded_patch = encoded_patch.reshape(1, 1, -1)
tokens = tokens.reshape(1, -1)
# Get input embeddings
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
# Concatenate the encoded patch with the input embeddings
tokens = torch.cat((encoded_patch, tokens[:,1:,:]), dim=1)
# Get output from model
outputs = self.base(inputs_embeds=tokens)
# Get probabilities of next token
probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
return probs
class TunesFormer(PreTrainedModel):
"""
TunesFormer is a hierarchical music generation model based on bar patching.
It includes a patch-level decoder and a character-level decoder.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, encoder_config, decoder_config, share_weights=False):
super().__init__(encoder_config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
if share_weights:
max_layers = max(encoder_config.num_hidden_layers, decoder_config.num_hidden_layers)
max_context_size = max(encoder_config.max_length, decoder_config.max_length)
max_position_embeddings = max(encoder_config.max_position_embeddings, decoder_config.max_position_embeddings)
encoder_config.num_hidden_layers = max_layers
encoder_config.max_length = max_context_size
encoder_config.max_position_embeddings = max_position_embeddings
decoder_config.num_hidden_layers = max_layers
decoder_config.max_length = max_context_size
decoder_config.max_position_embeddings = max_position_embeddings
self.patch_level_decoder = PatchLevelDecoder(encoder_config)
self.char_level_decoder = CharLevelDecoder(decoder_config)
if share_weights:
self.patch_level_decoder.base = self.char_level_decoder.base.transformer
def forward(self, patches: torch.Tensor, patch_sampling_batch_size: int=PATCH_SAMPLING_BATCH_SIZE):
"""
The forward pass of the TunesFormer model.
:param patches: the patches to be both encoded and decoded
:return: the decoded patches
"""
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
return self.char_level_decoder(encoded_patches.squeeze(0)[:-1, :], patches.squeeze(0)[1:, :], patch_sampling_batch_size)
def generate(self, patches: torch.Tensor,
tokens: torch.Tensor,
top_p: float=1,
top_k: int=0,
temperature: float=1,
seed: int=None):
"""
The generate function for generating patches based on patches.
:param patches: the patches to be encoded
:return: the generated patches
"""
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
if tokens==None:
tokens = torch.tensor([self.bos_token_id], device=self.device)
generated_patch = []
random.seed(seed)
while True:
if seed!=None:
n_seed = random.randint(0, 1000000)
random.seed(n_seed)
else:
n_seed = None
prob = self.char_level_decoder.generate(encoded_patches[0][-1], tokens).cpu().detach().numpy()
prob = top_p_sampling(prob, top_p=top_p, return_probs=True)
prob = top_k_sampling(prob, top_k=top_k, return_probs=True)
token = temperature_sampling(prob, temperature=temperature, seed=n_seed)
generated_patch.append(token)
if token == self.eos_token_id or len(tokens) >= PATCH_SIZE - 1:
break
else:
tokens = torch.cat((tokens, torch.tensor([token], device=self.device)), dim=0)
return generated_patch, n_seed