-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw5_RBFN_2.py
183 lines (146 loc) · 5 KB
/
hw5_RBFN_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# -*- coding: utf-8 -*-
"""
Machine Learning HW3 : implementing Kmeans algorithm
@author: 21500080 Sungbin Kim
"""
import six.moves.cPickle as pickle
import gzip
import os
import numpy as np
import matplotlib.pyplot as plt
import operator
class RBFN():
def __init__(self,rbf_neuron):
self.rbf_neuron = rbf_neuron
self.sigma = None
self.centers = None
self.weight = None
def RBF_neuron(self,cen,data,sig):
val=np.exp(-(1/sig)*np.linalg.norm(cen-data)**2)
return val
def calculate_phi(self,data):
G=np.zeros((len(data),self.rbf_neuron))
for data_index,data_point in enumerate(data):
for cen_index,cen in enumerate(self.centers):
G[data_index,cen_index]=self.RBF_neuron(cen,data_point,self.sigma[cen_index])
return G
"""
for data_index in range(len(data)):
for cen_index in range(len(self.centers)):
G[data_index,cen_index]=self.RBF_neuron(self.centers[cen_index],data[data_index],self.sigma[cen_index])
return G
G = np.zeros((len(X), self.hidden_shape))
for data_point_arg, data_point in enumerate(X):
for center_arg, center in enumerate(self.centers):
G[data_point_arg, center_arg] = self._kernel_function(
center, data_point)
return G
"""
def fit(self,data_x,label,cen,var):
self.centers=cen
self.sigma=var
psedo=self.calculate_phi(data_x)
self.weight=np.dot(np.linalg.pinv(psedo),label)
def predict(self,X):
G = self.calculate_phi(X)
predictions = np.dot(G, self.weight)
return predictions
def load_data(data):
list=np.array([])
slice=[]
f=open(data,'r')
while True:
line=f.readline()
if not line: break
slice_arr=np.array([])
slice=(line.split())
for i in range(len(slice)):
slice_arr=np.append(slice_arr,float(slice[i]))
list=np.append(list,slice_arr,axis=0)
#list=list+slice_arr
list=list.reshape(int(len(list)/len(slice_arr)),len(slice_arr))
f.close()
return list
def normalization(train,maxval,minval):
data=(train-minval)/(maxval-minval)
return data
def distance(A,B):
vec_dist=np.sum((A-B)**2)**(1/2)
return vec_dist
def variance(A,cen):
print("\n\n\n\n")
var={}
for index,cenval in enumerate(cen):
var[index]=0
for data in A[index]:
var[index]+=np.linalg.norm((data-cen[index]))**2
var[index]=var[index]/len(A[index])
return var
def cen_var(cen,var):
for index, varval in enumerate(var):
cen[index]=np.append(cen[index],var[index])
return cen
def kmeans(train,k):
iter=300
centroid={}
cluster={}
pre_err=np.inf
cur_err=0
#initialize centroid with the train set
for i in range(k):
centroid[i]=train[i]
#centroid[i]=np.random.rand(len(train[0]))
#EM algorithm
for t in range(iter):
#initialize number of clusters
for i in range(k):
cluster[i]=[]
#cluster the data into min(dist)
for r in train:
dist=[]
for num in range(k):
dist.append(distance(r,centroid[num]))
centroid_index=dist.index(min(dist))
cluster[centroid_index].append(r)
#centroid update with the mean
for i in range(k):
centroid[i]=np.average(cluster[i],axis=0)
#evaluate pre_err with cur_err
cur_err=measure_error(cluster,centroid,k)
if (pre_err-cur_err)<0.001:
update=t
break
pre_err=cur_err
return cluster, centroid, cur_err, update
def measure_error(cluster,centroid,k):
error_sum=0
for i in range(k):
for r in cluster[i]:
error_sum+=np.power(distance(r,centroid[i]),2)
return error_sum
def scatter_circle(xy, label):
for index,xyval in enumerate(xy):
if label[index]>0.9:
plt.scatter(xyval[0],xyval[1],alpha=0.5,color='blue')
else:
plt.scatter(xyval[0],xyval[1],alpha=0.5,color='green')
plt.show()
if __name__ == '__main__':
#circle in square data
#load the train data
train_set=load_data("cis_train1.txt")
test_set=load_data("cis_test.txt")
#find the mu and variance
cluster, centroid, error, update=kmeans(train_set[:,0:-1],5)
var=variance(cluster,centroid)
r=RBFN(5)
r.fit(train_set[:,0:-1],train_set[:,-1],centroid,var)
Y=r.predict(test_set[:,0:-1])
scatter_circle(train_set[:,0:-1],train_set[:,-1])
#scatter_circle(test_set[:,0:-1],Y)
#train algorithm
for i in range(1):
RBF_train(w,train_set,centroid,var)
for i in range(len(train_set)):
plt.scatter(train_set[i][0],train_set[i][1],color='blue')
plt.show()