merve HF staff commited on
Commit
bfb4bc1
·
1 Parent(s): 0613665

Upload train.py

Browse files
Files changed (1) hide show
  1. train.py +117 -0
train.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import skops
2
+ import sklearn
3
+ import matplotlib.pyplot as plt
4
+ from sklearn.preprocessing import OneHotEncoder
5
+ from sklearn.impute import SimpleImputer
6
+ from sklearn.compose import ColumnTransformer
7
+ from sklearn.tree import DecisionTreeClassifier
8
+ from sklearn.pipeline import Pipeline
9
+
10
+ # preprocess the dataset
11
+
12
+ df = pd.read_csv("../input/tabular-playground-series-aug-2022/train.csv")
13
+
14
+
15
+ column_transformer_pipeline = ColumnTransformer([
16
+ ("loading_missing_value_imputer", SimpleImputer(strategy="mean"), ["loading"]),
17
+ ("numerical_missing_value_imputer", SimpleImputer(strategy="mean"), list(df.columns[df.dtypes == 'float64'])),
18
+ ("attribute_0_encoder", OneHotEncoder(categories = "auto"), ["attribute_0"]),
19
+ ("attribute_1_encoder", OneHotEncoder(categories = "auto"), ["attribute_1"]),
20
+ ("product_code_encoder", OneHotEncoder(categories = "auto"), ["product_code"])])
21
+
22
+ df = df.drop(["id"], axis=1)
23
+
24
+
25
+ pipeline = Pipeline([
26
+ ('transformation', column_transformer_pipeline),
27
+ ('model', DecisionTreeClassifier(max_depth=4))
28
+ ])
29
+
30
+ X = df.drop(["failure"], axis = 1)
31
+ y = df.failure
32
+
33
+ # split the data and train the model
34
+
35
+ from sklearn.model_selection import train_test_split
36
+ X_train, X_test, y_train, y_test = train_test_split(X, y)
37
+ pipeline.fit(X_train, y_train)
38
+
39
+ # we will now use skops to initialize a repository
40
+ # create a model card, and push the model to the
41
+ # Hugging Face Hub
42
+ from skops import card, hub_utils
43
+ import pickle
44
+
45
+ model_path = "model.pkl"
46
+ local_repo = "decision-tree-playground-kaggle"
47
+
48
+ # save the model
49
+ with open(model_path, mode="bw") as f:
50
+ pickle.dump(pipeline, file=f)
51
+
52
+ # initialize the repository
53
+ hub_utils.init(
54
+ model=model_path,
55
+ requirements=[f"scikit-learn={sklearn.__version__}"],
56
+ dst=local_repo,
57
+ task="tabular-classification",
58
+ data=X_test,
59
+ )
60
+
61
+ # initialize the model card
62
+ from pathlib import Path
63
+ model_card = card.Card(pipeline, metadata=card.metadata_from_config(Path(local_repo)))
64
+
65
+ ## let's fill some information about the model
66
+ limitations = "This model is not ready to be used in production."
67
+ model_description = "This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset."
68
+ model_card_authors = "huggingface"
69
+ get_started_code = f"import pickle \nwith open({local_repo}/{model_path}, 'rb') as file: \n clf = pickle.load(file)"
70
+
71
+ # pass this information to the card
72
+ model_card.add(
73
+ get_started_code=get_started_code,
74
+ model_card_authors=model_card_authors,
75
+ limitations=limitations,
76
+ model_description=model_description,
77
+ )
78
+
79
+ # we will now evaluate the model and write eval results to the card
80
+ from sklearn.metrics import accuracy_score, f1_score, ConfusionMatrixDisplay, confusion_matrix
81
+ model_card.add(eval_method="The model is evaluated using test split, on accuracy and F1 score with micro average.")
82
+ model_card.add_metrics(accuracy=accuracy_score(y_test, y_pred))
83
+ model_card.add_metrics(**{"f1 score": f1_score(y_test, y_pred, average="micro")})
84
+
85
+ model = pipeline.steps[-1][1]
86
+
87
+ # we will plot the tree and add the plot to our card
88
+ from sklearn.tree import plot_tree
89
+ plt.figure()
90
+ plot_tree(model,filled=True)
91
+ plt.savefig(f'{local_repo}/tree.png',format='png',bbox_inches = "tight")
92
+
93
+ # let's make a prediction and evaluate the model
94
+ y_pred = pipeline.predict(X_test)
95
+ cm = confusion_matrix(y_test, y_pred, labels=model.classes_)
96
+ disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=model.classes_)
97
+ disp.plot()
98
+
99
+ # save the plot
100
+ plt.savefig(Path(local_repo) / "confusion_matrix.png")
101
+
102
+ # add figures to model card with their new sections as keys to the dictionary
103
+ model_card.add_plot(**{"Tree Plot": f'{local_repo}/tree.png', "Confusion Matrix": f"{local_repo}/confusion_matrix.png"})
104
+
105
+ #save the card
106
+ model_card.save(f"{local_repo}/README.md")
107
+
108
+ # we can now push the model!
109
+ # if the repository doesn't exist remotely on the Hugging Face Hub, it will be created when we set create_remote to True
110
+ repo_id = "scikit-learn/tabular-playground"
111
+ hub_utils.push(
112
+ repo_id=repo_id,
113
+ source=local_repo,
114
+ token=token,
115
+ commit_message="pushing files to the repo from the example!",
116
+ create_remote=True,
117
+ )