|
1 | 1 | \chapter{Prop}
|
2 | 2 | \label{chapter-prop}
|
3 | 3 |
|
| 4 | +\newcommand{\Ps}{P(\vec{s}\,)} |
| 5 | +\newcommand{\Pt}{P(\vec{t}\;)} |
| 6 | +\newcommand{\Pu}{P(\vec{u}\,)} |
| 7 | +\newcommand{\Pv}{P(\vec{v}\,)} |
4 | 8 |
|
5 |
| -Prop!\cite{cervesato13substructural} |
| 9 | +\begin{figure} |
| 10 | +\footnotesize |
| 11 | +\[ |
| 12 | + \arraycolsep=15pt |
| 13 | + \begin{array}{c} |
| 14 | + \begin{array}{ccc} |
| 15 | + \infer[\mbox{E-R}]{\CSeq{\Phi}{\Gamma}{E}}{\Phi \models E} |
| 16 | + & |
| 17 | + \infer[\mbox{E-L}]{\CSeq{\Phi}{\Gamma, E}{C}}{\CSeq{\Phi \And E}{\Gamma}{C}} |
| 18 | + & |
| 19 | + \infer[\mbox{E-init}]{\CSeq{\Phi}{\Gamma, \Ps)}{\Pt}}{\Phi \models \vec{s} \EEq \vec{t}} |
| 20 | + \end{array} |
| 21 | + \\[2em] |
| 22 | +
|
| 23 | + \begin{array}{cc} |
| 24 | + \infer[\Top$-R$]{\CSeq{\Phi}{\Gamma}{\Top}}{} |
| 25 | + & |
| 26 | + \mbox{No rule for $\Top$-L} |
| 27 | + \end{array} |
| 28 | + \\[2em] |
| 29 | +
|
| 30 | + \begin{array}{cc} |
| 31 | + \mbox{No rule for $\Bot$-R} |
| 32 | + & |
| 33 | + \infer[\Bot$-L$]{\CSeq{\Phi}{\Gamma, \Bot}{C}}{} |
| 34 | + \end{array} |
| 35 | + \\[2em] |
| 36 | +
|
| 37 | + \begin{array}{cc} |
| 38 | + \infer[\And$-R$]{\CSeq{\Phi}{\Gamma}{A \And B}}{\CSeq{\Phi}{\Gamma}{A} & \CSeq{\Phi}{\Gamma}{B}} |
| 39 | + & |
| 40 | + \infer[\And$-L$]{\CSeq{\Phi}{\Gamma, A \And B}{C}}{\CSeq{\Phi}{\Gamma, A, B}{C}} |
| 41 | + \end{array} |
| 42 | + \\[2em] |
| 43 | +
|
| 44 | + \begin{array}{ccc} |
| 45 | + \infer[\Or$-R$_1]{\CSeq{\Phi}{\Gamma}{A \Or B}}{\CSeq{\Phi}{\Gamma}{A}} |
| 46 | + & |
| 47 | + \infer[\Or$-R$_2]{\CSeq{\Phi}{\Gamma}{A \Or B}}{\CSeq{\Phi}{\Gamma}{B}} |
| 48 | + & |
| 49 | + \infer[\Or$-L$]{\CSeq{\Phi}{\Gamma, A \Or B}{C}}{\CSeq{\Phi}{\Gamma, A}{C} & \CSeq{\Phi}{\Gamma, B}{C}} |
| 50 | + \end{array} |
| 51 | + \\[2em] |
| 52 | +
|
| 53 | + \begin{array}{cc} |
| 54 | + \infer[\Imp$-R$]{\CSeq{\Phi}{\Gamma}{A \Imp B}}{\CSeq{\Phi}{\Gamma, A}{B}} |
| 55 | + & |
| 56 | + \infer[\Imp$-L$]{\CSeq{\Phi}{\Gamma, A \Imp B}{C}}{\CSeq{\Phi}{\Gamma, B}{C} & \CSeq{\Phi}{\Gamma, A \Imp B}{A}} |
| 57 | + \end{array} |
| 58 | + \\[2em] |
| 59 | +
|
| 60 | + \begin{array}{cc} |
| 61 | + \infer[\All$-R$]{\CSeq{\Phi}{\Gamma}{\All x.~A(x)}}{\CSeq{\Phi}{\Gamma}{A(a)} & a\not\in\Phi, \Gamma, A} |
| 62 | + & |
| 63 | + \infer[\All$-L$]{\CSeq{\Phi}{\Gamma, \All x.~A(x)}{C}}{\CSeq{\Phi}{\Gamma, \All x.~A(x), A(t)}{C}} |
| 64 | + \end{array} |
| 65 | + \\[2em] |
| 66 | +
|
| 67 | + \begin{array}{cc} |
| 68 | + \infer[\Ex$-R$]{\CSeq{\Phi}{\Gamma}{\Ex x.~A(x)}}{\CSeq{\Phi}{\Gamma}{A(t)}} |
| 69 | + & |
| 70 | + \infer[\Ex$-L$]{\CSeq{\Phi}{\Gamma, \Ex x.~A(x)}{C}}{\CSeq{\Phi}{\Gamma, A(a)}{C} & a\not\in\Phi, \Gamma, A} |
| 71 | + \end{array} |
| 72 | + \\[2em] |
| 73 | +
|
| 74 | + \end{array} |
| 75 | +\] |
| 76 | +\caption{The backward constraint calculus, \C.} |
| 77 | +\label{fig:backward} |
| 78 | +\end{figure} |
| 79 | + |
| 80 | +\begin{figure} |
| 81 | +\[ |
| 82 | + \arraycolsep=15pt |
| 83 | + \begin{array}{c} |
| 84 | + \begin{array}{cc} |
| 85 | + \infer[\mbox{id}]{\Phi \models \Phi}{} |
| 86 | + & |
| 87 | + \infer[\mbox{trans}]{\Phi_1 \models \Phi_3}{\Phi_1\models\Phi_2 & \Phi_2\models\Phi_3} |
| 88 | + \end{array} |
| 89 | + \\[2em] |
| 90 | + \begin{array}{ccc} |
| 91 | + \infer[\And_1]{\Phi_1 \And \Phi_2 \models \Phi_1}{} |
| 92 | + & |
| 93 | + \infer[\And_2]{\Phi_1 \And \Phi_2 \models \Phi_2}{} |
| 94 | + & |
| 95 | + \infer[\And]{\Phi \models \Phi_1 \And \Phi_2}{\Phi \models \Phi_1 & \Phi \models \Phi_2} |
| 96 | + \end{array} |
| 97 | + \\[2em] |
| 98 | + \begin{array}{ccc} |
| 99 | + \infer[$refl$]{\Phi \models t\EEq t}{} |
| 100 | + & |
| 101 | + \infer[$sym$]{\Phi \models s\EEq t}{\Phi\models t\EEq s} |
| 102 | + & |
| 103 | + \infer[$vec$]{\Phi \models \vec{s}\EEq \vec{t}}{|s| = |t| = n & \Phi\models s_1\EEq t_1 & \cdots & \Phi\models s_n\EEq t_n} |
| 104 | + \end{array} |
| 105 | + \\[2em] |
| 106 | + \end{array} |
| 107 | +\] |
| 108 | +\caption{Properties of the entailment relation.} |
| 109 | +\label{fig:entailment} |
| 110 | +\end{figure} |
| 111 | + |
| 112 | +To verify the internal integrity (soundness and completeness) of $\C$, we prove the standard |
| 113 | +cut elimination and identity properties. |
| 114 | + |
| 115 | +\begin{theorem}[Identity] For any $\Phi, \Gamma, A$, \[\CSeq{\Phi}{\Gamma, A}{A}\].\end{theorem} |
| 116 | +\begin{proof} |
| 117 | +Induction on $A$. Most cases are simple uses of the induction hypotheses. We |
| 118 | +show some representative cases. |
| 119 | +\begin{description} |
| 120 | +\item[Case] $A = E$. By entailment rules id and $\And_2$, we have $\Phi\And E\models E$. |
| 121 | +Therefore |
| 122 | +\[ |
| 123 | +\infer[$E-L$]{\CSeq{\Phi}{\Gamma, E}{E}}{\infer[$E-R$]{\CSeq{\Phi\And E}{\Gamma}{E}}{\Phi\And E \models E}} |
| 124 | +\] |
| 125 | + |
| 126 | +\item[Case] $A = \Ps$. By entailment rules refl and vec, we have $\Phi\models \vec{s}\EEq\vec{s}$. |
| 127 | +Therefore |
| 128 | +\[ |
| 129 | +\infer[$init$]{\CSeq{\Phi}{\Gamma, \Ps}{\Ps}}{\Phi\models\vec{s}\EEq\vec{s}} |
| 130 | +\] |
| 131 | + |
| 132 | +\item[Case] $A = \All x.~B(x)$ |
| 133 | +\[ |
| 134 | +\infer[\All$-R$]{\CSeq{\Phi}{\Gamma, \All x.~B(x)}{\All x.~B(x)}}{\infer[\All$-L$]{\CSeq{\Phi}{\Gamma, \All x.~B(x)}{B(a)}}{\deduce{\CSeq{\Phi}{\Gamma, \All x.~B(x), B(a)}{B(a)}}{\D'}}} |
| 135 | +\] |
| 136 | + |
| 137 | +where $\D'$ exists by induction hypothesis. |
| 138 | +\end{description} |
| 139 | +\end{proof} |
| 140 | + |
| 141 | +\begin{theorem}[Admissibility of Cut]\label{thm:cut-admissible} |
| 142 | +The following rule is admissible: |
| 143 | + |
| 144 | +\[ |
| 145 | +\infer-[cut]{\CSeq{\Phi}{\Gamma}{C}}{\CSeq{\Phi}{\Gamma}{A} & \CSeq{\Phi}{\Gamma, A}{C}} |
| 146 | +\] |
| 147 | +\end{theorem} |
| 148 | + |
| 149 | +Following Pfenning~\cite{pfenning95lics,pfenning00ic}, we use a structural cut elimination |
| 150 | +argument. The proof requires the following lemmas describing some properties of the |
| 151 | +entailment relation\footnote{Indeed, the proof of cut elimination largely determined the |
| 152 | +minimal requirements of the entailment relation.}. |
| 153 | + |
| 154 | +\begin{lemma}[Constraint Weakening]\label{lem:e-weaken} |
| 155 | +For any $\Phi, \Phi', \Gamma, C$, if $\Phi'\models \Phi$ and $\CSeq{\Phi}{\Gamma}{C}$ |
| 156 | +then $\CSeq{\Phi'}{\Gamma}{C}$. |
| 157 | +\end{lemma} |
| 158 | +\begin{proof} |
| 159 | + By induction on the derivation $\CSeq{\Phi}{\Gamma}{C}$. Some cases: |
| 160 | + \begin{description} |
| 161 | + \item[Case] |
| 162 | + \[\infer[$E-R$]{\CSeq{\Phi}{\Gamma}{E}}{\Phi\models E}\] |
| 163 | + By transitivity of entailment (rule trans) we have $\Phi'\models E$ so |
| 164 | + $\CSeq{\Phi'}{\Gamma}{E}$ by rule E-R. |
| 165 | + \item[Case] |
| 166 | + \[\infer[$E-L$]{\CSeq{\Phi}{\Gamma, E}{C}}{\CSeq{\Phi\And E}{\Gamma}{C}}\] |
| 167 | + By entailment reasoning, we have $\Phi'\And E\models\Phi\And E$. By induction |
| 168 | + hypothesis we have that $\CSeq{\Phi'\And E}{\Gamma}{C}$ so $\CSeq{\Phi'}{\Gamma, E}{C}$ |
| 169 | + by rule E-L. |
| 170 | + \end{description} |
| 171 | +\end{proof} |
| 172 | + |
| 173 | +\begin{lemma}[Inversion]\label{lem:e-invert} |
| 174 | +For any $\Phi, \Gamma, E, C$ if $\CSeq{\Phi}{\Gamma, E}{C}$ then $\CSeq{\Phi\And E}{\Gamma}{C}$. |
| 175 | +\end{lemma} |
| 176 | +\begin{proof} Easy induction on the derivation. \end{proof} |
| 177 | + |
| 178 | +\begin{lemma}[Contraction]\label{lem:contract} |
| 179 | + If $\CSeq{\Phi}{\Gamma, \Ps, \Pt}{C}$ and $\Phi\models\vec{s}\EEq\vec{t}$ then |
| 180 | + $\CSeq{\Phi}{\Gamma, \Ps}{C}$. |
| 181 | +\end{lemma} |
| 182 | + |
| 183 | +\begin{proof} |
| 184 | + Induction on the derivation $\D$ of $\CSeq{\Phi}{\Gamma, \Ps, \Pt}{C}$. |
| 185 | + \begin{description} |
| 186 | + \item[Case] $\D$ is |
| 187 | + \[ |
| 188 | + \infer[\mbox{E-init}]{\CSeq{\Phi}{\Gamma', \Pu}{\Pv}}{\Phi \models \vec{u} \EEq \vec{v}} |
| 189 | + \] |
| 190 | + We have $C = \Pv$ and $\Gamma, \Ps, \Pt = \Gamma', \Pu$. |
| 191 | + If $\vec{u} \neq \vec{t}$ then we already have |
| 192 | + $\CSeq{\Phi}{(\Gamma'\setminus \Pt), \Pu}{\Pv}$ by rule E-init. Otherwise |
| 193 | + we have $\Gamma' = \Gamma, \Ps$ and $\Phi\models\vec{t} \EEq \vec{v}$ and $\Phi\models\vec{s} \EEq \vec{t}$ so |
| 194 | + $\Phi\models\vec{s} \EEq \vec{v}$. Then $\CSeq{\Phi}{\Gamma, \Ps}{\Pv}$ |
| 195 | + by rule E-init. |
| 196 | + \item[Case] $\D$ is |
| 197 | + \[ |
| 198 | + \infer[\mbox{E-L}]{\CSeq{\Phi}{\Gamma, \Ps, \Pt, E}{C}}{\CSeq{\Phi\And E}{\Gamma}{C}} |
| 199 | + \] |
| 200 | + Since $E$ can not be an atomic formula, $E\neq \Ps$ and, $E\neq \Pt$. |
| 201 | + Since $\Phi\models \vec{s}\EEq\vec{t}$, $\Phi\And E\models \vec{s}\EEq\vec{t}$, so |
| 202 | + the induction hypothesis applies and we have $\CSeq{\Phi\And E}{\Gamma, \Ps}{C}$. |
| 203 | + The result follows from an application of rule E-L. |
| 204 | + \end{description} |
| 205 | +\end{proof} |
| 206 | + |
| 207 | +\begin{lemma}[Constraint Substitution]\label{lem:subst} |
| 208 | + If $\CSeq{\Phi}{\Gamma}{\Ps}$ and $\Phi\models\vec{s}\EEq\vec{t}$ then |
| 209 | + $\CSeq{\Phi}{\Gamma}{\Pt}$. |
| 210 | +\end{lemma} |
| 211 | + |
| 212 | +\begin{proof} |
| 213 | + Induction on the derivation $\D$ of $\CSeq{\Phi}{\Gamma}{\Ps}$. |
| 214 | + \begin{description} |
| 215 | + \item[Case] $\D$ is |
| 216 | + \[ |
| 217 | + \infer[\mbox{E-init}]{\CSeq{\Phi}{\Gamma', \Pu}{\Pv}}{\Phi \models \vec{u} \EEq \vec{v}} |
| 218 | + \] |
| 219 | + \end{description} |
| 220 | +\end{proof} |
| 221 | + |
| 222 | + |
| 223 | +\begin{proof}[Proof of Theorem~\ref{thm:cut-admissible}] |
| 224 | +Let $\D :: \CSeq{\Phi}{\Gamma}{A}$ and $\E :: \CSeq{\Phi}{\Gamma, A}{C}$. |
| 225 | +We proceed by induction on $A, \D, \E$. The majority of the cases don't modify |
| 226 | +the constraints in any way, and the cases are identical with Pfenning's proof. We |
| 227 | +show the cases where constraints play a significant role. |
| 228 | + |
| 229 | +\begin{description} |
| 230 | +\item[Case] |
| 231 | + Initial cuts. These are cuts where one of the derivations is initial with A as |
| 232 | + its principle formula. |
| 233 | + \begin{description} |
| 234 | + \item[Case] |
| 235 | + $\D$ is \[\infer[$E-R$]{\CSeq{\Phi}{\Gamma}{E}}{\Phi\models E}\] |
| 236 | + Since $A = E$ we have $\CSeq{\Phi}{\Gamma, E}{C}$. By inversion (Lemma~\ref{lem:e-invert}) we |
| 237 | + have a derivation of $\CSeq{\Phi\And E}{\Gamma}{C}$. |
| 238 | + Then since $\Phi\models E$, we have $\Phi\models\Phi\And E$ (constraint rules id and $\And$) so by |
| 239 | + constraint weakening (Lemma~\ref{lem:e-weaken}) we have $\CSeq{\Phi}{\Gamma}{C}$ as required. |
| 240 | + \item[Case] |
| 241 | + $\D$ is \[\infer[$E-init$]{\CSeq{\Phi}{\Gamma', \Ps}{\Pt}}{\Phi\models \vec{s}\EEq\vec{t}}\] |
| 242 | + Then $\Gamma = \Gamma', \Ps$, $A = \Pt$. By assumption we |
| 243 | + have $\CSeq{\Phi}{\Gamma', \Ps, \Pt}{C}$. By contraction (Lemma~\ref{lem:contract}) |
| 244 | + we have $\CSeq{\Phi}{\Gamma', \Ps}{C}$ as required. |
| 245 | + \item[Case] |
| 246 | + $\E$ is \[\infer[$E-init$]{\CSeq{\Phi}{\Gamma, \Ps}{\Pt}}{\Phi\models \vec{s}\EEq\vec{t}}\] |
| 247 | + Then $A = \Ps, C = \Pt$. By assumption we |
| 248 | + have $\CSeq{\Phi}{\Gamma}{\Ps}$. The result follows by constraint substitution (Lemma~\ref{lem:subst}). |
| 249 | + |
| 250 | + \end{description} |
| 251 | + |
| 252 | +\item[Case] |
| 253 | + Principal cuts. |
| 254 | + \begin{description} |
| 255 | + \item[Case] Foo |
| 256 | + \item[Case] Bar |
| 257 | + \end{description} |
| 258 | + |
| 259 | +\item[Case] |
| 260 | + Left commutative cuts. |
| 261 | + \begin{description} |
| 262 | + \item[Case] Foo |
| 263 | + \item[Case] Bar |
| 264 | + \end{description} |
| 265 | + |
| 266 | +\item[Case] |
| 267 | + Right commutative cuts. |
| 268 | + \begin{description} |
| 269 | + \item[Case] Foo |
| 270 | + \item[Case] Bar |
| 271 | + \end{description} |
| 272 | + |
| 273 | +\end{description} |
| 274 | + |
| 275 | + |
| 276 | +\end{proof} |
| 277 | + |
| 278 | +Simmons~\cite{simmons14tocl} considerably simplified the proofs of |
| 279 | +cut elimination and identity using a technique he calls |
| 280 | +\emph{structural focalization}. |
| 281 | + |
| 282 | +%%% Local Variables: |
| 283 | +%%% mode: latex |
| 284 | +%%% TeX-master: "thesis" |
| 285 | +%%% End: |
0 commit comments