-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsample_code.py
145 lines (119 loc) · 5.19 KB
/
sample_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import absolute_import, division, print_function
# only keep warnings and errors
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='0'
import numpy as np
import argparse
import re
import time
import tensorflow as tf
import tensorflow.contrib.slim as slim
import scipy.misc
import matplotlib.pyplot as plt
import pdb
import cv2
import math
import glob
import os
from model_inference import *
from monodepth_dataloader import *
parser = argparse.ArgumentParser(description='Sample code for Joint end-to-end pruning.')
parser.add_argument('--dir', type=str, help='root directory', required=False)
parser.add_argument('--checkpoint_path', type=str, help='path to a specific checkpoint to load', required=True)
parser.add_argument('--input_height', type=int, help='input height', default=256)
parser.add_argument('--input_width', type=int, help='input width', default=512)
args = parser.parse_args()
def ensure_dir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def post_process_disparity(disp):
_, h, w = disp.shape
l_disp = disp[0,:,:]
r_disp = np.fliplr(disp[1,:,:])
m_disp = 0.5 * (l_disp + r_disp)
l, _ = np.meshgrid(np.linspace(0, 1, w), np.linspace(0, 1, h))
l_mask = 1.0 - np.clip(20 * (l - 0.05), 0, 1)
r_mask = np.fliplr(l_mask)
return r_mask * l_disp + l_mask * r_disp + (1.0 - l_mask - r_mask) * m_disp
def test_video(params):
"""Test function."""
try:
left = tf.placeholder(tf.float32, [2, args.input_height, args.input_width, 3])
nw_nfilter = np.load('eigen_pruned.npy')
model = MonodepthModel(params, "test", left, None,archFromNP=nw_nfilter)
# COUNT PARAMS
total_num_parameters = 0
for variable in tf.trainable_variables():
total_num_parameters += np.array(variable.get_shape().as_list()).prod()
print("number of trainable parameters: {}".format(total_num_parameters))
# SESSION
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
# SAVER
train_saver = tf.train.Saver()
# INIT
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
coordinator = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coordinator)
# RESTORE
restore_path = args.checkpoint_path.split(".")[0]
train_saver.restore(sess, restore_path)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
outvid = cv2.VideoWriter('output.avi',fourcc, 5.0, (1242,375*2))
filenames = sorted(glob.glob(args.dir+'*.jpg'))
tot_time = 0.0
#warm up for lazy loading in cuda
for i in range(5):
input_image = scipy.misc.imread(filenames[0], mode="RGB")
orig_input = input_image
original_height, original_width, num_channels = input_image.shape
input_image = scipy.misc.imresize(input_image, [args.input_height, args.input_width], interp='lanczos')
input_image = input_image.astype(np.float32) / 255
input_images = np.stack((input_image, np.fliplr(input_image)), 0)
disp = sess.run(model.disp_left_est[0], feed_dict={left: input_images})
for cur,filename in enumerate(filenames):
input_image = scipy.misc.imread(filename, mode="RGB")
orig_input = input_image
original_height, original_width, num_channels = input_image.shape
input_image = scipy.misc.imresize(input_image, [args.input_height, args.input_width], interp='lanczos')
input_image = input_image.astype(np.float32) / 255
input_images = np.stack((input_image, np.fliplr(input_image)), 0)
start = time.time()
disp = sess.run(model.disp_left_est[0], feed_dict={left: input_images})
end = time.time()
tot_time += 0 if cur == 0 else (end-start)
fps = "FPS: - "
if cur > 0:
print("FPS: %f"%(cur/tot_time))
fps = "FPS: %d"%round(cur/tot_time)
disp_pp = post_process_disparity(disp.squeeze()).astype(np.float32)
disp_to_img = scipy.misc.imresize(disp_pp.squeeze(), [original_height, original_width])
disp_to_img = cv2.applyColorMap(np.uint8(disp_to_img), cv2.COLORMAP_JET)
outframe = np.vstack([cv2.cvtColor(orig_input,cv2.COLOR_RGB2BGR),disp_to_img])
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(outframe,fps, (orig_input.shape[1]-200,orig_input.shape[0]+50), font, 1,(0,255,0),2,cv2.LINE_AA)
outvid.write(outframe)
print('Done %s'%filename)
except:
outvid.release()
print('done!')
def main(_):
params = monodepth_parameters(
encoder='vgg',
height=args.input_height,
width=args.input_width,
batch_size=2,
num_threads=1,
num_epochs=1,
do_stereo=False,
wrap_mode="border",
use_deconv=False,
alpha_image_loss=0,
disp_gradient_loss_weight=0,
lr_loss_weight=0,
distill_loss_weight=0,
full_summary=False)
test_video(params)
if __name__ == '__main__':
tf.app.run()