-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_lstm_music.py
341 lines (238 loc) · 8.33 KB
/
3_lstm_music.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# %%
# MIDIファイルの扱い方 - ここでは pretty_midiを使う
# !pip install pretty_midi
import torch
import pretty_midi
# %%
path = './data/midi/chopin/train/chpn-p1.mid'
pm = pretty_midi.PrettyMIDI(path)
print(pm)
# %%
# トラックを確認
print(pm.instruments)
# %%
# MIDIのNote-on Note-offの確認
for inst in pm.instruments:
if inst.is_drum: # ドラムはトラックは無視
continue
for note in inst.notes[:5]: # 最初の5ノート
print(note)
print(inst.program)
# %%
# MIDIのNote-on Note-offの確認
MIN_NOTE = 36
MAX_NOTE = 92
PITCH_NUM = 92 - 36 + 1
def get_pitch_array(filepath):
print(filepath)
pm = pretty_midi.PrettyMIDI(filepath)
# トラックごとにピッチの配列を作る
results = []
for inst in pm.instruments:
if inst.is_drum: # ドラムはトラックは無視
continue
# noteをスタートのタイミングでソートする
notes = sorted(inst.notes, key=lambda note: note.start)
# ピッチのみの配列
pitches = [ min(PITCH_NUM - 1, max(0, note.pitch - MIN_NOTE)) for note in inst.notes ]
results.append(pitches)
return results
#%%
pitch_array = get_pitch_array(path)
print(pitch_array)
#%%
def pitch_array_to_midi(pitches, bpm=120):
pm = pretty_midi.PrettyMIDI()
piano = pretty_midi.instrument_name_to_program('Acoustic Grand Piano')
piano = pretty_midi.Instrument(program=piano)
quarter_note_length = 60/bpm
for index, pitch in enumerate(pitches):
start = index * quarter_note_length
end = start + quarter_note_length
p = pitch + MIN_NOTE
note = pretty_midi.Note(velocity=100, pitch= p, start=start, end=end)
piano.notes.append(note)
pm.instruments.append(piano)
return pm
#%%
import os
os.makedirs("./tmp", exist_ok=True)
pitches = get_pitch_array(path)
print(pitches)
midi = pitch_array_to_midi(pitches[0][:100])
midi.write("./tmp/pitch-only.mid")
#%%
from torch.utils.data import Dataset
from pathlib import Path
import random
class MIDIData(Dataset):
def __init__(self, path, prime_length = 8, total_num = 1000):
self.files = Path(path).glob("*.mid")
# 各トラックごとにピッチの配列だけを取り出した配列を作る
pitches = []
for filepath in self.files:
pitches.extend(get_pitch_array(str(filepath)))
# ランダムに prime_lengthの長さのピッチ列を作り、次のノートを格納する
self.primes = []
self.nexts = []
for _ in range(total_num):
ps = random.choice(pitches)
if (len(ps) < prime_length + 1):
continue # 短すぎるシーケンスは無視
start_index = random.randint(0, len(ps) - prime_length -1 -1) # randintの範囲に注意
end_index = start_index + prime_length
next_index = end_index + 1 # 次のピッチのインデックス
prime = ps[start_index:end_index] # input
next_pitch = ps[next_index] # output
self.primes.append(prime)
self.nexts.append(next_pitch)
self.length = len(self.primes)
def __getitem__(self, index):
# PyTorchのテンソルにしてreturn
return torch.tensor(self.primes[index]), torch.tensor(self.nexts[index])
def __len__(self):
return self.length
# %%
train_data = MIDIData('./data/midi/chopin/train/', total_num=500000)
val_data = MIDIData('./data/midi/chopin/val/', total_num=10000)
print(train_data.primes[:3])
print(train_data.nexts[:3])
batch_size = 32
train_data_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size)
val_data_loader = torch.utils.data.DataLoader(val_data, batch_size=batch_size)
# %%
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
EMBEDDING_DIM = 32
HIDDEN_DIM = 256
#%%
embed = nn.Embedding(PITCH_NUM, EMBEDDING_DIM)
#x, y = train_data_loader
x = torch.tensor(train_data.primes[0:3])
#x = torch.unsqueeze(x, 0)
print(x.shape)
#%%
emb = embed(x)
print(emb.shape)
# %%
# RNNの入力は デフォルトで(seq_length, batch, input dimension)のフォーマット
rnn = nn.RNN(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True)
output, h = rnn(emb)
#print(output.shape)
print(h.shape)
# %%
h = h.squeeze()
fc = nn.Linear(HIDDEN_DIM, PITCH_NUM)
y = fc(h)
print(y.shape)
# %%
# ピッチのシーケンスから次のピッチを予測するモデル
class PitcnNet(nn.Module):
def __init__(self):
super(PitcnNet, self).__init__()
self.embeds = nn.Embedding(PITCH_NUM, EMBEDDING_DIM)
self.rnn = nn.RNN(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True)
self.fc = nn.Linear(HIDDEN_DIM, PITCH_NUM)
def forward(self, x):
emb = self.embeds(x)
_, h = self.rnn(emb)
h = h.squeeze(dim=0)
y = self.fc(h)
return y
pitchnet = PitcnNet()
#%%
# ピッチのシーケンスから次のピッチを予測するモデル
class PitcnNet2(nn.Module):
def __init__(self):
super(PitcnNet2, self).__init__()
self.embeds = nn.Embedding(PITCH_NUM, EMBEDDING_DIM)
self.lstm = nn.LSTM(EMBEDDING_DIM, HIDDEN_DIM, batch_first=True)
self.fc = nn.Linear(HIDDEN_DIM, PITCH_NUM)
def forward(self, x):
emb = self.embeds(x)
_, (h, _) = self.lstm(emb) # output, (h, c)
h = h.squeeze()
y = self.fc(h)
return y
pitchnet = PitcnNet2()
# %%
# Optimizer
optimizer = optim.Adam(pitchnet.parameters(), lr=0.001)
# GPUの有無を確認
if torch.cuda.is_available():
print("Using GPU")
device = torch.device("cuda")
else:
print("Using CPU")
device = torch.device("cpu")
pitchnet.to(device) # 昔のバージョンだと cuda()
print(pitchnet)
# %%
for batch in train_data_loader:
inputs, labels = batch
inputs = inputs.to(device)
labels = labels.to(device)
out = pitchnet(inputs)
print(out.shape)
break
# %%
def train(model, optimizer,loss_fn, train_loader, val_loader, epochs=20, device="cpu"):
for epoch in range(epochs):
training_loss = 0.0
valid_loss = 0.0
model.train() # 学習モードにセット DropoutLayerなどが有効に
for batch in train_loader:
optimizer.zero_grad() # 一旦リセット
inputs, labels = batch
inputs = inputs.to(device)
labels = labels.to(device)
output = model(inputs)
loss = loss_fn(output, labels)
loss.backward() # back propagation - gradientの計算
optimizer.step()
training_loss += loss.data.item()
training_loss /= len(train_loader) # average
model.eval()# 学習モードをオフ DropoutLayerなどが無効に モデルのパラメータはアップデートされない
num_correct = 0
num_examples = 0
for batch in val_loader:
inputs, labels = batch
inputs = inputs.to(device)
labels = labels.to(device)
output = model(inputs)
loss = loss_fn(output, labels)
valid_loss += loss.data.item()
correct = torch.eq(torch.max(F.softmax(output, dim=1), dim=1)[1], labels).view(-1)
num_correct += torch.sum(correct).item()
num_examples += correct.shape[0]
valid_loss /= len(val_loader)
print('Epoch: {}, Training Loss: {:.2f}, Validation Loss: {:.2f}, Accuracy = {:.2f}'
.format(epoch, training_loss, valid_loss, num_correct/num_examples))
# %%
# training
train(pitchnet, optimizer, torch.nn.CrossEntropyLoss(), train_data_loader,
val_data_loader, epochs=100, device=device)
print("finished training")
#%%
# save
import os
os.makedirs("./tmp", exist_ok=True)
torch.save(pitchnet, "./tmp/pitchnet_model.pth") # まるごとセーブ
#%%
pitchnet.eval()
seq = random.choice(val_data.primes)
seq = torch.tensor(seq)
seq = seq.to(device)
for _ in range(36):
seq_input = torch.unsqueeze(seq, 0) # バッチを作る
output = pitchnet(seq_input)
print(output.shape)
prediction = F.softmax(output)
next_note = prediction.argmax()
seq = torch.cat((seq, torch.unsqueeze(next_note,0)), 0)
print(seq)
# %%
pm = pitch_array_to_midi(seq.tolist())
pm.write("./tmp/piano-output.mid")
# %%