-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
78 lines (73 loc) · 2.63 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#######################################################################
# Copyright (C) 2017 Shangtong Zhang([email protected]) #
# Permission given to modify the code as long as you keep this #
# declaration at the top #
#######################################################################
from .normalizer import *
import argparse
import torch
class Config:
DEVICE = torch.device('cpu')
def __init__(self):
self.parser = argparse.ArgumentParser()
self.task_fn = None
self.optimizer_fn = None
self.actor_optimizer_fn = None
self.critic_optimizer_fn = None
self.network_fn = None
self.actor_network_fn = None
self.critic_network_fn = None
self.replay_fn = None
self.random_process_fn = None
self.discount = None
self.target_network_update_freq = None
self.exploration_steps = None
self.logger = None
self.history_length = None
self.double_q = False
self.tag = 'vanilla'
self.num_workers = 1
self.gradient_clip = None
self.entropy_weight = 0
self.use_gae = False
self.gae_tau = 1.0
self.target_network_mix = 0.001
self.state_normalizer = RescaleNormalizer()
self.reward_normalizer = RescaleNormalizer()
self.min_memory_size = None
self.max_steps = 0
self.rollout_length = None
self.value_loss_weight = 1.0
self.iteration_log_interval = 30
self.categorical_v_min = None
self.categorical_v_max = None
self.categorical_n_atoms = 51
self.num_quantiles = None
self.optimization_epochs = 4
self.mini_batch_size = 64
self.termination_regularizer = 0
self.sgd_update_frequency = None
self.random_action_prob = None
self.__eval_env = None
self.log_interval = int(1e3)
self.save_interval = 0
self.eval_interval = 0
self.eval_episodes = 10
self.async_actor = True
@property
def eval_env(self):
return self.__eval_env
@eval_env.setter
def eval_env(self, env):
self.__eval_env = env
self.state_dim = env.state_dim
self.action_dim = env.action_dim
self.task_name = env.name
def add_argument(self, *args, **kwargs):
self.parser.add_argument(*args, **kwargs)
def merge(self, config_dict=None):
if config_dict is None:
args = self.parser.parse_args()
config_dict = args.__dict__
for key in config_dict.keys():
setattr(self, key, config_dict[key])