-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathmerge_weight.py
executable file
·117 lines (98 loc) · 4.09 KB
/
merge_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import os
import sys
import pdb
import torch
from peft import LoraConfig, get_peft_model
from transformers import AutoProcessor # do not remove this line
from model.qwen2_vl.processing_qwen2_vl import Qwen2VLProcessor
from model.qwen2_vl.modeling_qwen2_vl import Qwen2VLForConditionalGeneration
def parse_args(args):
parser = argparse.ArgumentParser(
description="merge lora weights and save model with hf format"
)
# Env
parser.add_argument(
"--precision",
default="bf16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
# Model
parser.add_argument("--version", default="Qwen/Qwen2-VL-2B-Instruct")
parser.add_argument("--out_dim", default=256, type=int)
parser.add_argument("--model_max_length", default=4096, type=int)
# Lora
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=16, type=int)
parser.add_argument("--lora_dropout", default=0.05, type=float)
parser.add_argument("--lora_target_modules", default="qkv_proj", type=str)
# Training and save
parser.add_argument("--weight", type=str, required=True)
return parser.parse_args(args)
def find_target_linear_names(model, num_lora_modules=-1, lora_namespan_exclude=["self_attn", "lm_head"], verbose=True):
linear_cls = torch.nn.modules.Linear
lora_module_names = []
# lora_namespan_exclude += ["vision_model", "img_projection", "visual_model"]
for name, module in model.named_modules():
if any(ex_keyword in name for ex_keyword in lora_namespan_exclude):
continue
if isinstance(module, linear_cls):
lora_module_names.append(name)
if num_lora_modules > 0:
lora_module_names = lora_module_names[-num_lora_modules:]
if verbose:
print(f"Found {len(lora_module_names)} lora modules: {lora_module_names}")
return lora_module_names
def main(args):
args = parse_args(args)
args.save_path = os.path.dirname(args.weight) + "/merged_model"
# Create processor
processor = Qwen2VLProcessor.from_pretrained(args.version,
padding_side='right',
model_max_length=args.model_max_length)
# use unk rather than eos token to prevent endless generation
# processor.tokenizer.pad_token = processor.tokenizer.unk_token
# processor.tokenizer.pad_token_id = processor.tokenizer.convert_tokens_to_ids(processor.tokenizer.pad_token)
# processor.tokenizer.padding_side = 'right'
torch_dtype = torch.float32
if args.precision == "bf16":
torch_dtype = torch.bfloat16
elif args.precision == "fp16":
torch_dtype = torch.half
model = Qwen2VLForConditionalGeneration.from_pretrained(
args.version,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
_attn_implementation="eager",
# **model_args
)
model.config.use_cache = False
model.config.tokenizer_model_max_length = processor.tokenizer.model_max_length
lora_r = args.lora_r
if lora_r > 0:
lora_alpha = args.lora_alpha
lora_dropout = args.lora_dropout
lora_target_modules = find_target_linear_names(model, lora_namespan_exclude=["visual"])
lora_config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
state_dict = torch.load(args.weight, map_location="cpu")
# model.load_state_dict(state_dict, strict=True)
model.load_state_dict(state_dict, strict=False)
model = model.merge_and_unload()
state_dict = {}
for k, v in model.state_dict().items():
state_dict[k] = v
model.save_pretrained(args.save_path, state_dict=state_dict, safe_serialization=False)
processor.save_pretrained(args.save_path)
if __name__ == "__main__":
main(sys.argv[1:])