-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathtrain.py
603 lines (540 loc) · 26.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import argparse
import re
import os
import shutil
import sys
import pdb
import time
import json
import wandb
from functools import partial
from datetime import datetime
import deepspeed
import torch
import tqdm
import transformers
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoProcessor, BitsAndBytesConfig # do not remove this line
from main.trainer import train
from main.eval_aitw import validate_aitw
from main.eval_mind2web import validate_mind2web
from main.eval_screenspot import validate_screenspot
from main.evaluator import validate as validate_default
from model.utils import find_target_linear_names
from data.dataset import HybridDataset, collate_fn
from data.data_utils import AverageMeter, ProgressMeter, Summary, dict_to_cuda
from utils.utils import save_args_to_json, create_log_dir
def env_init(distributed=True):
print("Init Env for Distributed Training")
if distributed:
if 'OMPI_COMM_WORLD_SIZE' in os.environ:
os.environ['MASTER_ADDR'] = os.environ.get("MASTER_ADDR", 'localhost')
os.environ['MASTER_PORT'] = os.environ.get("MASTER_PORT", "12875")
os.environ['WORLD_SIZE'] = os.environ['OMPI_COMM_WORLD_SIZE']
os.environ['RANK'] = os.environ['OMPI_COMM_WORLD_RANK']
os.environ['LOCAL_RANK'] = os.environ['OMPI_COMM_WORLD_LOCAL_RANK']
print(f"OMPI_COMM_WORLD_SIZE: {os.environ['OMPI_COMM_WORLD_SIZE']}")
print(f"OMPI_COMM_WORLD_RANK: {os.environ['OMPI_COMM_WORLD_RANK']}")
print(f"OMPI_COMM_WORLD_LOCAL_RANK: {os.environ['OMPI_COMM_WORLD_LOCAL_RANK']}")
print(f"MASTER_ADDR: {os.environ['MASTER_ADDR']}")
print(f"MASTER_PORT: {os.environ['MASTER_PORT']}")
elif 'WORLD_SIZE' in os.environ:
os.environ['MASTER_ADDR'] = os.environ.get("MASTER_ADDR", 'localhost')
os.environ['MASTER_PORT'] = os.environ.get("MASTER_PORT", "12875")
print(f"WORLD_SIZE: {os.environ['WORLD_SIZE']}")
print(f"LOCAL_RANK: {os.environ['LOCAL_RANK']}")
else:
return
else:
return
# a tricky way to broadcast timestamp to all ranks
def broadcast_timestamp(src=0, local_rank=0):
if dist.get_rank() == src:
timestamp = torch.tensor([datetime.now().timestamp()], dtype=torch.float64).to(f'cuda:{local_rank}')
else:
timestamp = torch.zeros(1, dtype=torch.float64).to(f'cuda:{local_rank}')
dist.broadcast(timestamp, src=src)
time_str = datetime.fromtimestamp(timestamp.item()).strftime('%Y-%m-%d_%H-%M-%S')
return time_str
def parse_args(args):
parser = argparse.ArgumentParser(description="ShowUI Training Pipeline")
# Environment
parser.add_argument("--wandb_key", default=None, type=str, help="wandb key to monitor training")
parser.add_argument("--local_rank", default=0, type=int, help="node rank")
parser.add_argument(
"--precision",
default="bf16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--ds_zero", choices=['zero1', 'zero2', 'zero3'], default='zero2', help="deepspeed zero stage")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=False)
parser.add_argument("--attn_imple", choices=["eager", "flash_attention_2", "sdpa"], default="eager")
parser.add_argument("--liger_kernel", action="store_true", default=False)
# Model & Ckpt
parser.add_argument("--model_id", default="showlab/ShowUI-2B", choices=["showlab/ShowUI-2B", "Qwen/Qwen2-VL-2B-Instruct", "Qwen/Qwen2-VL-7B-Instruct"])
parser.add_argument("--version", default="showlab/ShowUI-2B")
parser.add_argument("--max_new_tokens", default=128, type=int, help="max. generated token length")
parser.add_argument("--local_weight", action="store_true", default=False)
parser.add_argument("--local_weight_dir", default=".", help="default path to load the model weight")
# Visual Encoder Training strategy
parser.add_argument("--tune_visual_encoder", action="store_true", default=False)
parser.add_argument("--tune_visual_encoder_projector", action="store_true", default=False)
parser.add_argument("--freeze_lm_embed", action="store_true", default=False)
# Training / Validation Data
parser.add_argument("--dataset_dir", default="./dataset", type=str)
parser.add_argument("--train_dataset", default="showui", type=str)
parser.add_argument("--train_json", default="hf_train", type=str)
parser.add_argument("--train_ratio", default="1", type=str)
parser.add_argument("--val_dataset", default="screenspot", type=str)
parser.add_argument("--val_json", default="hf_test_full", type=str)
parser.add_argument("--val_ratio", default="1", type=str)
parser.add_argument("--uniform_sample", action="store_true", default=False)
parser.add_argument("--random_sample", action="store_true", default=False)
parser.add_argument("--record_sample", action="store_true", default=False)
### ShowUI Preprocessor
# 0. Common setups
parser.add_argument("--min_visual_tokens", default=256, type=int)
parser.add_argument("--max_visual_tokens", default=1280, type=int)
parser.add_argument("--model_max_length", default=8192, type=int)
# 1. Screenshot -> Graph
parser.add_argument("--uigraph_train", action="store_false", default=True, help="Enable ui graph during training")
parser.add_argument("--uigraph_test", action="store_true", default=False, help="Enable ui graph during inference")
parser.add_argument("--uigraph_diff", default=1, type=int, help="Pixel difference used for constructing ui graph")
parser.add_argument("--uigraph_rand", action="store_true", default=False, help="Enable random graph construction")
# 2. Graph -> Mask
parser.add_argument("--uimask_pre", action="store_false", default=True, help="Prebuild patch selection mask in the preprocessor (not in model layers) for efficiency")
parser.add_argument("--uimask_ratio", default=0.5, type=float, help="Specify the percentage of patch tokens to skip per component")
parser.add_argument("--uimask_rand", action="store_true", default=False, help="Enable random token selection instead of uniform selection")
### ShowUI Model
# 0 is without layer token selection, 1 is with layer token selection. Below we provide examples:
# [1,28,1] means that all LM layers use token selection; [1,28,0] means that do not.
# Interleaved layer-wise '[2,2,1],[4,4,1],[6,6,1],[8,8,1],[10,10,1],[12,12,1],[14,14,1],[16,16,1],[18,18,1],[20,20,1],[22,22,1],[24,24,1],[26,26,1]'
parser.add_argument("--lm_skip_ratio", default=0, type=float)
parser.add_argument("--lm_skip_layer", default='[1,28,0]', type=str)
parser.add_argument("--vis_skip_ratio", default=0, type=float)
parser.add_argument("--vis_skip_layer", default='[1,32,0]', type=str)
# Pretrain / Supervised Fine-tuning
parser.add_argument("--showui_data", default="hf_train", type=str)
parser.add_argument("--amex_data", default="hf_train", type=str)
parser.add_argument("--guiact_data", default="hf_train_web-single_v2", type=str)
parser.add_argument("--ricosca_data", default="hf_train_ricosca", type=str)
parser.add_argument("--widget_data", default="hf_train_widget", type=str)
parser.add_argument("--screencap_data", default="hf_train_screencap", type=str)
# Downstream train. set
parser.add_argument("--aitw_data", default="hf_train", type=str)
parser.add_argument("--mind2web_data", default="hf_train", type=str)
parser.add_argument("--miniwob_data", default="hf_train", type=str)
# Downstream val. set
parser.add_argument("--val_aitw_data", default="hf_test", type=str)
parser.add_argument("--val_mind2web_data", default="hf_test_full", type=str)
parser.add_argument("--val_screenspot_data", default="hf_test_full", type=str)
# Grounding setting
parser.add_argument("--num_turn", default=1, type=int, help="Interleaved Query-Action setting")
parser.add_argument("--shuffle_image_token", action="store_true", default=False, help="shuffle image token for training")
parser.add_argument("--uniform_prompt", action="store_true", default=False)
parser.add_argument("--text2point", default=1, type=float)
parser.add_argument("--text2bbox", default=0, type=float)
parser.add_argument("--point2text", default=0, type=float)
parser.add_argument("--bbox2text", default=0, type=float)
parser.add_argument("--crop_min", default=1, type=float)
parser.add_argument("--crop_max", default=1, type=float)
parser.add_argument("--xy_int", action="store_true", default=False)
# Navigation setting
parser.add_argument("--num_history", default=4, type=int)
parser.add_argument("--interleaved_history", default='tttt', choices=['tttt', 'vvvv', 'vtvt', 'tvtv', 'vvtt', 'ttvv'], help="Interleaved Vision-Action setting")
parser.add_argument("--skip_readme_train", action="store_true", default=False)
parser.add_argument("--skip_readme_test", action="store_true", default=False)
# Lora
parser.add_argument("--use_qlora", action="store_true", default=False)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=16, type=int)
parser.add_argument("--lora_dropout", default=0.05, type=float)
parser.add_argument("--lora_target_modules", default="qkv_proj", type=str)
# Training
parser.add_argument("--log_base_dir", default="../runs", type=str)
parser.add_argument("--exp_id", default="debug", type=str)
parser.add_argument("--workers", default=16, type=int)
parser.add_argument("--epochs", default=10, type=int)
parser.add_argument("--start_epoch", default=0, type=int)
parser.add_argument("--steps_per_epoch", default=500, type=int)
parser.add_argument("--lr", default=0.0003, type=float)
parser.add_argument("--warmup_steps", default=100, type=int)
parser.add_argument("--warmup_type", default="linear", type=str)
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument("--beta2", default=0.95, type=float)
parser.add_argument("--batch_size", default=1, type=int, help="batch size per device per step")
parser.add_argument("--grad_accumulation_steps", default=1, type=int)
parser.add_argument("--val_batch_size", default=1, type=int)
parser.add_argument("--gradient_checkpointing", action="store_true", default=False)
# Model Checkpoint or Evaluation strategies
parser.add_argument("--resume", default="", type=str)
parser.add_argument("--auto_resume", action="store_true", default=True)
parser.add_argument("--no_eval", action="store_true", default=False)
parser.add_argument("--eval_only", action="store_true", default=False)
parser.add_argument("--print_freq", default=1, type=int)
parser.add_argument("--debug", action="store_true", default=False, help="for debugging, will not save model and monitor")
return parser.parse_args(args)
def main(args):
print("\033[34m##########################################################\033[0m")
print("\033[34m############ 💻 Building GUI Agents with ShowUI ##########\033[0m")
print("\033[34m##########################################################\033[0m")
env_init()
args = parse_args(args)
args.global_rank = int(os.environ.get("RANK", 0))
args.local_rank = int(os.environ.get("LOCAL_RANK", args.local_rank))
args.world_size = int(os.environ.get("WORLD_SIZE", 1))
if args.attn_imple in ["eager", "sdpa"]:
# suggested by https://github.com/Lightning-AI/litgpt/issues/327
torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cuda.enable_flash_sdp(False)
timestamp = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') if args.global_rank == 0 else None
args.distributed = args.world_size > 1
# ensure all rank share the same timestamp
if args.distributed:
print(f"Using distributed training with {args.world_size} GPUs, with rank {os.environ['RANK']}")
deepspeed.init_distributed(dist_backend="nccl", rank=args.global_rank, world_size=args.world_size)
timestamp = broadcast_timestamp(0, args.local_rank)
args.log_dir = os.path.join(args.log_base_dir, args.exp_id, timestamp)
args.tmp_dir = os.path.join(args.log_dir, "tmp")
# must provide wandb-key
assert args.wandb_key is not None
wandb.login(key=args.wandb_key)
writer = None
if args.global_rank == 0:
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.tmp_dir, exist_ok=True)
save_args_to_json(args, os.path.join(args.log_dir, "args.json")) # save args to json
if not args.debug:
writer = SummaryWriter(os.path.join(args.log_dir, 'tensorboard')) # init. tensorboard writer
# init. wandb monitor
wandb.init(
project="ShowUI",
group=args.exp_id,
name=f'{args.exp_id}_{timestamp}',
dir=args.log_dir,
config=args
)
print(f"Start Job: {args.exp_id}")
# Create processor
if args.model_id in ["showlab/ShowUI-2B"]:
from model.showui.processing_showui import ShowUIProcessor
if args.local_weight:
model_url = f"{args.local_weight_dir}/{model_id}"
else:
model_url = args.model_id
processor = ShowUIProcessor.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct",
min_pixels=args.min_visual_tokens *28*28,
max_pixels=args.max_visual_tokens *28*28,
model_max_length=args.model_max_length,
uigraph_train=args.uigraph_train, uigraph_test=args.uigraph_test,
uigraph_diff=args.uigraph_diff, uigraph_rand=args.uigraph_rand,
uimask_pre=args.uimask_pre, uimask_ratio=args.uimask_ratio, uimask_rand=args.uimask_rand
)
elif args.model_id in ["Qwen/Qwen2-VL-2B-Instruct", "Qwen/Qwen2-VL-7B-Instruct"]:
from model.qwen2_vl.processing_qwen2_vl import Qwen2VLProcessor
from model.qwen2_vl.modeling_qwen2_vl import Qwen2VLForConditionalGeneration
model_id = args.model_id.replace("Qwen/", "")
if args.local_weight:
model_url = f"{args.local_weight_dir}/{model_id}"
else:
model_url = args.model_id
processor = Qwen2VLProcessor.from_pretrained(
model_url,
min_pixels=args.min_visual_tokens *28*28,
max_pixels=args.max_visual_tokens *28*28,
model_max_length=args.model_max_length,
)
processor.chat_template = "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
# Create model
torch_dtype = torch.float32
if args.precision == "bf16":
torch_dtype = torch.bfloat16
elif args.precision == "fp16":
torch_dtype = torch.half
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_skip_modules=["img_projection"],
) if args.use_qlora else None
# Create model
if args.local_weight:
model_id = args.model_id.replace("Qwen/", "")
model_url = f"{args.local_weight_dir}/{model_id}"
else:
model_url = args.model_id
if args.model_id in ["showlab/ShowUI-2B"]:
from model.utils import parse_layer_type
from model.showui.modeling_showui import ShowUIForConditionalGeneration
lm_qwen_layer = 28
vis_qwen_layer = 32
lm_skip_layer = parse_layer_type(args.lm_skip_layer, lm_qwen_layer)
vis_skip_layer = parse_layer_type(args.vis_skip_layer, vis_qwen_layer)
model = ShowUIForConditionalGeneration.from_pretrained(
model_url,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
_attn_implementation=args.attn_imple,
quantization_config=bnb_config,
device_map=f"cuda:{args.local_rank}",
lm_skip_layer=lm_skip_layer,
lm_skip_ratio=args.lm_skip_ratio,
)
elif args.model_id in ["Qwen/Qwen2-VL-2B-Instruct", "Qwen/Qwen2-VL-7B-Instruct"]:
from model.qwen2_vl.modeling_qwen2_vl import Qwen2VLForConditionalGeneration
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_url,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
_attn_implementation=args.attn_imple,
quantization_config=bnb_config,
device_map=f"cuda:{args.local_rank}",
)
# load model checkpoint
if args.version != args.model_id:
state_dict = torch.load(args.version, map_location="cpu")
model.load_state_dict(state_dict, strict=False)
model.config.use_cache = False
if args.liger_kernel:
# https://github.com/linkedin/Liger-Kernel
print("Apply liger kernel to ShowUI for efficiency")
from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl
apply_liger_kernel_to_qwen2_vl()
# During evaluation mode, no need to load lora
if args.eval_only:
print("evaluation mode, thus set the `lora_r' as zero.")
args.lora_r = 0
if not args.eval_only and args.use_qlora:
model = prepare_model_for_kbit_training(model)
# Config lora using peft library
lora_r = args.lora_r
if lora_r > 0:
lora_alpha = args.lora_alpha
lora_dropout = args.lora_dropout
exclude_module = ["visual"] if not args.tune_visual_encoder else []
exclude_module += ["lm_head"] if args.freeze_lm_embed else exclude_module
lora_target_modules = find_target_linear_names(model, lora_namespan_exclude=exclude_module)
lora_config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
if args.global_rank == 0:
model.print_trainable_parameters()
model_child = model.model.model
else:
model_child = model.model
# Gradient checkpointing
if args.gradient_checkpointing:
model.enable_input_require_grads()
model.gradient_checkpointing_enable()
if not args.tune_visual_encoder:
if args.lora_r > 0:
for p in model.base_model.model.visual.parameters():
p.requires_grad = False
elif args.lora_r == 0:
for p in model.visual.parameters():
p.requires_grad = False
if args.tune_visual_encoder_projector:
for k, p in model.named_parameters():
if 'visual.merger' in k:
p.requires_grad = True
if args.freeze_lm_embed:
if args.lora_r > 0:
for p in model_child.embed_tokens.parameters():
p.requires_grad = False
elif args.lora_r == 0:
for p in model_child.embed_tokens.parameters():
p.requires_grad = False
# Check trainable parameters
list_of_params_to_optimize = []
for n, p in model.named_parameters():
if p.requires_grad:
if args.global_rank == 0:
print("[Name]", n, " [Shape]", p.shape)
list_of_params_to_optimize.append(p)
# Create dataset
args.samples_per_epoch = args.batch_size \
* args.grad_accumulation_steps \
* args.steps_per_epoch \
* args.world_size
train_dataset = HybridDataset(
processor,
inference=False,
args=args
)
val_dataset = HybridDataset(
processor,
inference=True,
args=args
)
if args.val_dataset == "mind2web":
validate = validate_mind2web
elif args.val_dataset == "screenspot":
validate = validate_screenspot
elif args.val_dataset == "aitw":
validate = validate_aitw
else:
validate = validate_default
if not args.random_sample:
args.steps_per_epoch = len(train_dataset) // (args.batch_size * args.world_size)
# Build deepspeed config and initialize deepspeed
ds_config = {
"train_micro_batch_size_per_gpu": args.batch_size,
"gradient_accumulation_steps": args.grad_accumulation_steps,
"optimizer": {
"type": "AdamW",
"params": {
"lr": args.lr,
"weight_decay": 0.0,
"betas": (args.beta1, args.beta2),
},
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"total_num_steps": args.epochs * args.steps_per_epoch,
"warmup_min_lr": 0,
"warmup_max_lr": args.lr,
"warmup_num_steps": args.warmup_steps,
"warmup_type": args.warmup_type,
},
},
"fp16": {
"enabled": args.precision == "fp16",
},
"bf16": {
"enabled": args.precision == "bf16",
}
}
config_url = f'ds_configs/{args.ds_zero}.json'
with open(config_url, 'r') as file:
ds_json = json.load(file)
ds_config.update(ds_json)
# lora tuning
if lora_r > 0:
model_engine, optimizer, train_loader, scheduler = deepspeed.initialize(
model=model,
model_parameters=list_of_params_to_optimize,
training_data=train_dataset,
collate_fn=partial(
collate_fn,
processor=processor
),
config=ds_config,
)
# full tunning
elif lora_r == 0 and not args.eval_only:
model_engine, optimizer, train_loader, scheduler = deepspeed.initialize(
model=model,
model_parameters=list_of_params_to_optimize,
training_data=train_dataset,
collate_fn=partial(
collate_fn,
processor=processor
),
config=ds_config,
)
# evaluation
elif args.eval_only:
for param in model.parameters():
param.requires_grad = False
model_engine = model
else:
raise ValueError("Invalid setting")
# Resume deepspeed checkpoint
if args.auto_resume and len(args.resume) == 0:
resume = os.path.join(args.log_dir, "ckpt_model")
if os.path.exists(resume):
args.resume = resume
if args.resume:
load_path, client_state = model_engine.load_checkpoint(args.resume)
with open(os.path.join(args.resume, "latest"), "r") as f:
ckpt_dir = f.readlines()[0].strip()
args.start_epoch = (
int(ckpt_dir.replace("global_step", "")) // args.steps_per_epoch
)
if args.global_rank == 0:
print(
"resume training from {}, start from epoch {}".format(
args.resume, args.start_epoch
)
)
# validation dataset
if val_dataset is not None:
assert args.val_batch_size == 1
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, drop_last=False) if args.distributed else None
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.val_batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=False,
sampler=val_sampler,
collate_fn=partial(
collate_fn,
processor=processor
),
)
else:
val_loader = None
if args.eval_only:
local_rank = args.local_rank
model_engine = model_engine.to(f'cuda:{local_rank}')
validate(val_loader, model_engine, processor, 0, 0, writer, args)
exit()
train_iter = iter(train_loader)
best_score = 0
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
train_iter, global_step = train(
train_loader,
model_engine,
epoch,
scheduler,
writer,
train_iter,
args,
)
if args.no_eval == False and val_loader is not None:
score = validate(val_loader, model_engine, processor, epoch, global_step, writer, args)
is_best = score > best_score
best_score = max(score, best_score)
else:
is_best = True
best_score = 0
if args.no_eval or is_best:
save_dir = os.path.join(args.log_dir, "ckpt_model")
if args.global_rank == 0:
os.makedirs(save_dir, exist_ok=True)
torch.save(
{"epoch": epoch},
os.path.join(
save_dir,
"meta_log_epo{:.0f}_score{:.2f}.pth".format(
epoch, best_score
),
),
)
torch.distributed.barrier()
try:
model_engine.save_checkpoint(save_dir)
except Exception as e:
print("Failed to save checkpoint (): ", e)
if args.global_rank == 0:
if not args.debug:
wandb.finish()
writer.close()
if __name__ == "__main__":
main(sys.argv[1:])