-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_encoder.py
74 lines (58 loc) · 2.32 KB
/
train_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import pickle
import torch
import torchvision
from torch import nn
from lightly.loss import NTXentLoss
from lightly.models.modules import SimCLRProjectionHead
from lightly.transforms.simclr_transform import SimCLRTransform
class SimCLR(nn.Module):
def __init__(self, backbone):
super().__init__()
self.backbone = backbone
self.projection_head = SimCLRProjectionHead(512, 512, 128)
def forward(self, x):
x = self.backbone(x).flatten(start_dim=1)
z = self.projection_head(x)
return z
if __name__ == "__main__":
resnet = torchvision.models.resnet18()
resnet.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
backbone = nn.Sequential(*list(resnet.children())[:-1])
model = SimCLR(backbone)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
transform = SimCLRTransform(input_size=28, gaussian_blur=0.0, normalize={"mean": [0.5], "std": [0.5]})
dataset = torchvision.datasets.MNIST(
root="data", train=True, download=True, transform=transform
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=256,
shuffle=True,
drop_last=True,
num_workers=8,
)
criterion = NTXentLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.06)
print("Starting Training")
loss_logs = []
for epoch in range(200):
total_loss = 0
for batch in dataloader:
x0, x1 = batch[0]
x0 = x0.to(device)
x1 = x1.to(device)
z0 = model(x0)
z1 = model(x1)
loss = criterion(z0, z1)
total_loss += loss.detach()
loss.backward()
optimizer.step()
optimizer.zero_grad()
avg_loss = total_loss / len(dataloader)
print(f"epoch: {epoch:>02}, loss: {avg_loss:.5f}")
loss_logs.append(avg_loss.item())
# save logs and model
with open('logs/sim_clr_loss_log.pkl', 'wb') as f:
pickle.dump(loss_logs, f)
torch.save(model.backbone.state_dict(), "models/encoder_mnist.pth")