-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcvgraph.py
58 lines (42 loc) · 1.29 KB
/
cvgraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#! python2
import numpy as np
import scipy as sc
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import pickle
import scipy.spatial
import scipy.io
colors = ['red', 'green', 'blue', 'black', 'white', 'yellow']
color_data = {
c: np.load('color-data/{}.npy'.format(c)) for c in colors
}
with open('color-data/data.mat', 'wb') as f:
scipy.io.savemat(f, color_data)
# discretize the image
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set(xlabel='R', ylabel='G', zlabel='B', xlim=[0, 255], ylim=[0, 255], zlim=[0, 255])
if False:
for c in colors:
data = color_data[c]
hull = scipy.spatial.ConvexHull(data)
ax.plot_trisurf(data[:, 0], data[:, 1], data[:, 2],triangles=hull.simplices, color=c)
else:
for c in colors:
data = color_data[c]
data = (data // 8) * 8 + 4
data = np.vstack({tuple(row) for row in data})
color_data[c] = data
with open('color-data/data-trunc.mat', 'wb') as f:
scipy.io.savemat(f, color_data)
for c in colors:
data = color_data[c]
ax.scatter(data[:, 0], data[:, 1], data[:, 2], marker='x', c=c)
r, g = np.mgrid[0:3,0:3]*255
b = r / 1.3
#ax.plot_surface(r,g,b, color='blue')
r = np.array([[0, 1], [0, 1]]) * 255
g = r / 1.3
b = np.array([[0, 0], [1, 1]]) * 255
#ax.plot_surface(r,g,b, color='green')
plt.show()