-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboids_algorithm3.py
216 lines (162 loc) · 8.63 KB
/
boids_algorithm3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import tkinter as tk
import random, cmath, math, copy
from cv2 import VideoWriter, VideoWriter_fourcc
from PIL import ImageGrab
import string
import numpy as np
class Window:
def __init__(self):
self.num_birds = 200 # Number of birds on screen
self.birds = [Bird() for _ in range(self.num_birds)]
# Walls or obstacles to keep away from
self.walls = wall(1,1,1921,2,10) + wall(1,1,2,1081, 10) + wall(1,1080,1921,1081, 10) + wall(1920,1,1921,1081, 10)
self.debug_mode = False
# Display initializing
self.root = tk.Tk()
self.root.attributes("-fullscreen", True)
self.root.bind("<Escape>", self.close)
self.width, self.height = self.root.winfo_screenwidth(), self.root.winfo_screenheight()
self.canvas = tk.Canvas(self.root, width=self.width, height=self.height)
self.canvas.pack()
if self.debug_mode:
self.root.bind("<space>", self.debug_next)
self.video_mode = False #
if self.video_mode:
self.fps = 30 # Number of frames per second in finished video
self.video_length = self.fps * 1 # Number of frames in finished video
self.framecount = 0 # Current frame
# Video initializing
letters = string.ascii_lowercase
random_str = ''.join(random.choice(letters) for _ in range(4)) # Random id to prevent overwriting other videos
path = "PATH/TO/NEW/VIDEOFILE"
file = path + str(self.num_birds) + '_' + random_str + ".avi" # Finished video location
fourcc = VideoWriter_fourcc(*'MP42')
self.video = VideoWriter(file, fourcc, float(self.fps), (self.width, self.height))
# Text to keep track of how long the video is.
frame_text = str(self.framecount) + "/"+str(self.video_length)
self.frame_text = self.canvas.create_text(70, 20, text=frame_text, font="Times 20 italic bold")
self.root.after(400, self.frame)
self.root.mainloop()
def debug_next(self, event):
self.frame()
def save_frame(self):
x=self.root.winfo_rootx()+self.canvas.winfo_x()
y=self.root.winfo_rooty()+self.canvas.winfo_y()
x1=x+self.canvas.winfo_width()
y1=y+self.canvas.winfo_height()
img = np.array(ImageGrab.grab().crop((x,y,x1,y1)))
img = np.flip(img, axis=2)
self.video.write(img)
self.framecount += 1
self.canvas.itemconfig(self.frame_text, text=str(self.framecount)+"/"+str(self.video_length))
if self.framecount >= self.video_length:
self.finished = True
self.video.release()
self.close(0)
def frame(self):
_ = [bird.update(self.birds, self) for bird in self.birds]
_ = [bird.draw(self.canvas) for bird in self.birds]
if self.video_mode:
self.save_frame()
if not self.debug_mode:
self.root.after(1, self.frame)
def draw(self, obj):
pos = copy.copy(obj.pos)
pos += complex(960,540)
if obj.id == -1:
obj.id = self.canvas.create_line(pos.real-self.bird_size, pos.imag - self.bird_size, pos.real+self.bird_size, pos.imag+self.bird_size, width=self.bird_size, fill='black')
else:
self.canvas.coords(obj.id, pos.real-self.bird_size, pos.imag - self.bird_size, pos.real+self.bird_size, pos.imag+self.bird_size)
def close(self, event):
self.root.withdraw()
quit()
class Bird:
def __init__(self):
self.id = -1
#Bird settings
self.size = 5 # Size of bird in pixels
self.speed = 5 # Number of pixels moved per second
self.vector = random_vector() # ranomized starting vector
self.pos = random_pos() # Randomized starting position
self.range = 100 # Range of sigth (to other birds)
self.wall_distance = 70 # Range of sight to obstacles
self.distance = 20 # Distance away from other birds
# ********************************************************
# Weight of different elements that compute the new vector
# ********************************************************
self.self_weight = 5
self.align_weight = 15
self.cohesion_weight = 1
self.steer_bird = lambda x : int(30 * math.exp(-0.3 * abs(x)))
self.steer_wall = lambda x : int(40 * math.exp(-0.03 * abs(x)))
self.new_vector, self.new_pos = 0j, 0j
def draw(self, canvas):
self.pos = self.new_pos
self.vector = self.new_vector
x, y = self.pos.real, self.pos.imag
if self.id == -1:
self.id = canvas.create_line(x, y, x + self.vector.real * self.size, y + self.vector.imag * self.size, width=self.size)
else:
canvas.coords(self.id, x, y, x + self.vector.real * self.size, y + self.vector.imag * self.size)
def alignment(self, close_birds):
# Alignment vector (Average of all vectors for other birds nearby)
return average([bird.vector for bird in close_birds])
def cohesion(self, close_birds):
# Cohesion vector (Vector from bird to average point of all birds in range)
ch_avg_point = average([bird.pos for bird in close_birds]) # Average point
relative_pos = (ch_avg_point - self.pos) if abs(ch_avg_point-self.pos) > 0 else self.vector # cohesion point relative to self
return relative_pos / abs(relative_pos) # Vector from self to cohesion point
def steer(self, close_birds, walls):
# Steer vector (opposite vector to average point of birds and walls within self.distance, excluding self)
steer_wall = [p for p in walls if abs(self.pos - p) <= self.wall_distance] # walls
steer_bird = [bird.pos for bird in close_birds if abs(bird.pos - self.pos) <= self.distance] # List of birds within self.distance from self
avg_point = average(steer_bird) # Average poin
relative_pos = (avg_point - self.pos) if abs(avg_point-self.pos) > 0 else 0 # Relative position
steer_vector_bird = -(relative_pos / abs(relative_pos)) # Vector away from relative position
steer_weight_bird = self.steer_bird(relative_pos)
avg_point = average(steer_wall) # Average point
relative_pos = (avg_point - self.pos) if abs(avg_point-self.pos) > 0 else 0 # Relative position
steer_vector_wall = -(relative_pos / abs(relative_pos)) # Vector away from relative position
steer_weight_wall = self.steer_wall(relative_pos)
#steer_weight = min(2, int(1 / (abs(relative_pos) / 100))) # Steer weight is weighted higher the closer the bird is to other birds, max weight is 10
return (steer_weight_bird, steer_vector_bird, steer_weight_wall, steer_vector_wall)
def update(self, birds, window):
close_birds = [] # List of birds within range, excluding self
for bird in birds:
if abs(bird.pos - self.pos) <= self.range and not self.id == bird.id:
close_birds.append(bird)
align_vector = self.alignment(close_birds)
cohesion_vector = self.cohesion(close_birds)
(steer_weight_bird, steer_vector_bird, steer_weight_wall, steer_vector_wall) = self.steer(close_birds, window.walls)
new_vector = average(self.self_weight * [self.vector, ] \
+ steer_weight_bird * [steer_vector_bird, ] \
+ steer_weight_wall * [steer_vector_wall, ] \
+ self.align_weight * [align_vector,] \
+ self.cohesion_weight * [cohesion_vector,])
self.new_vector = new_vector / abs(new_vector)
self.new_pos = (self.new_vector * self.speed) + self.pos
# Tools:
def randomize(vector):
x = vector.real + random.randint(-1000, 1000)/15000
y = vector.imag + random.randint(-1000, 1000)/15000
new_vector = complex(x,y)/abs(complex(x,y))
return new_vector
def average(lst):
# Average point on a complex plane from a list of points.
if len(lst) > 0:
return sum(lst)/len(lst)
return 0j
def random_vector():
# Random vector represented as a complex number with absolute value 1.
return cmath.exp(1j*(random.randrange(0, int(2*cmath.pi * 100000))/100000))
def random_pos():
# Random position on the plane represented by a complex number
return complex(random.randrange(0, 1920), random.randrange(0, 1080))
def wall(x, y, x1, y1, a):
# returns a list of points in a range, with step of 'a'
xs = list(range(x, x1, a))
ys = list(range(y, y1, a))
xs = xs + [xs[0],] * (max(len(xs),len(ys)) - len(xs))
ys = ys + [ys[0],] * (max(len(xs),len(ys)) - len(ys))
return [complex(x_point, y_point) for x_point, y_point in zip(xs,ys)]
Window()