-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
171 lines (149 loc) · 6.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import argparse
import torch
import matplotlib.pyplot as plt
import numpy as np
import time
from tqdm import tqdm
from copy import deepcopy
from utils import preset
from dataset import load_dataset, load_validation_fn
from model import DDiT, DDMLP
from ddms import d3pm, sedd
class EMA:
def __init__(self, model, ema_decay):
self.ema_decay = ema_decay
self.ema_param = [p.clone().detach().requires_grad_(False) for p in model.parameters() if p.requires_grad]
self.num_updates = 0
def to(self, device, dtype):
self.ema_param = [p.to(device, dtype) for p in self.ema_param]
def update_ema(self, model):
if len(self.ema_param) == 0:
raise ValueError("Shadow params not initialized before first ema update!")
self.num_updates += 1
ema_decay = min(self.ema_decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - ema_decay
with torch.no_grad():
parameters = [p for p in model.parameters() if p.requires_grad]
for ema_param, param in zip(self.ema_param, parameters):
ema_param.sub_(one_minus_decay * (ema_param - param))
if __name__ == "__main__":
# 1. config
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_name", type=str, choices=["moons", "count", "cifar", "piano"])
parser.add_argument("--model_name", type=str, choices=["d3pm", "sedd"])
parser.add_argument("--arch_name", type=str, choices=["ddit", "ddmlp"])
parser.add_argument("--noise_schedule", type=str, default="loglinear")
parser.add_argument("--scheduler_name", type=str, default="tweedie", choices=["euler", "tweedie"])
parser.add_argument("--eps", type=float, default=1e-3)
parser.add_argument("--num_samples", type=int, default=-1)
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--train_iter", type=int, default=1000)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--warmup", type=int, default=5000)
parser.add_argument("--ema_decay", type=float, default=0.9999)
parser.add_argument("--dataset_path", type=str, default='../datasets')
parser.add_argument("--wandb_key", type=str, default='')
parser.add_argument("--device", type=str, default="cuda:0")
args = parser.parse_args()
args = preset(args)
args.output_dir = f"runs/{args.dataset_name}-{args.model_name}"
args.exp = f"{args.lr}-{args.batch_size}"
os.makedirs(args.output_dir, exist_ok=True)
device = args.device
dtype = torch.float32
eps = args.eps
# 2. load dataset, dataloader
ds = load_dataset(args)
dl = torch.utils.data.DataLoader(ds, batch_size=args.batch_size)
# 3. load model
if args.arch_name == "ddit":
model = DDiT(
num_vocabs=args.num_vocabs,
cond_dim=args.cond_dim,
hidden_size=args.hidden_size,
n_heads=args.n_heads,
dropout=args.dropout,
n_blocks=args.n_blocks,
mlp_ratio=args.mlp_ratio,
)
if args.arch_name == "ddmlp":
model = DDMLP(
num_vocabs=args.num_vocabs,
length=args.length,
hidden_size=args.hidden_size,
n_blocks=args.n_blocks,
)
num_parameters = sum(p.numel() for p in model.parameters())
print(f"Number of parameters in the model: {num_parameters}")
# 4. load scheduler, loss function
if args.model_name == "d3pm":
if args.scheduler_name == "euler":
scheduler = d3pm.EulerScheduler(args)
if args.scheduler_name == "tweedie":
scheduler = d3pm.AnalyticScheduler(args)
loss_fn = d3pm.Loss(scheduler)
if args.model_name == "sedd":
if args.scheduler_name == "euler":
scheduler = sedd.EulerScheduler(args)
if args.scheduler_name == "tweedie":
scheduler = sedd.AnalyticScheduler(args)
loss_fn = sedd.Loss(scheduler)
# o. logging
import wandb
if args.wandb_key != "":
wandb.login(
key=args.wandb_key
)
wandb.init(
project=f"{args.dataset_name}-{args.model_name}",
name=args.exp,
config={} # Track hyperparameters and run metadata
)
# 5. prepare training
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
ema = EMA(model, args.ema_decay)
# 6. train
ema.to(device, dtype)
model.to(device, dtype)
scheduler.to(device, dtype)
loss_traj = []
global_step = 0
for _ in range(int(1e8)):
model.train()
for x0, _ in dl:
time_s = time.time()
x0 = x0.to(device)
# perturb x0
t = (1 - eps) * torch.rand(x0.shape[0], device=x0.device) + eps
xt = scheduler.add_noise(x0, t)
# model forward
sigma_bar = scheduler.sigma_bar(t)
output = model(xt, sigma_bar)
# compute loss function
loss = loss_fn(output, sigma_bar, xt, x0)
assert not loss.isnan().any()
# update
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if args.warmup > 0:
for g in optimizer.param_groups:
g['lr'] = args.lr * np.minimum(global_step / args.warmup, 1.0)
optimizer.step()
optimizer.zero_grad()
ema.update_ema(model)
loss_traj.append(loss.item())
wandb.log({'loss': loss.item()}, step=global_step)
global_step += 1
time_e = time.time()
if args.train_iter == global_step:
print(f'iter: {round(time_e - time_s, 5)}sec')
torch.save(ema.ema_param, f"{args.output_dir}/ema_param-{args.exp}.pt")
torch.save(model.state_dict(), f"{args.output_dir}/state_dict-{args.exp}.pt")
assert False, 'finish training'
# 7. validation
# validation_fn = load_validation_fn(args)
# validation_fn(
# model, scheduler, device, x0, path=f"{args.output_dir}/x0_gen-{args.scheduler_name}",
# num_samples=512, num_function_eval=1024, sample_eps=1e-3,
# )