-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathGeodesicLineExact.cpp
289 lines (261 loc) · 11 KB
/
GeodesicLineExact.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/**
* \file GeodesicLineExact.cpp
* \brief Implementation for GeographicLib::GeodesicLineExact class
*
* Copyright (c) Charles Karney (2012-2016) <[email protected]> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
*
* This is a reformulation of the geodesic problem. The notation is as
* follows:
* - at a general point (no suffix or 1 or 2 as suffix)
* - phi = latitude
* - beta = latitude on auxiliary sphere
* - omega = longitude on auxiliary sphere
* - lambda = longitude
* - alpha = azimuth of great circle
* - sigma = arc length along great circle
* - s = distance
* - tau = scaled distance (= sigma at multiples of pi/2)
* - at northwards equator crossing
* - beta = phi = 0
* - omega = lambda = 0
* - alpha = alpha0
* - sigma = s = 0
* - a 12 suffix means a difference, e.g., s12 = s2 - s1.
* - s and c prefixes mean sin and cos
**********************************************************************/
#include <GeographicLib/GeodesicLineExact.hpp>
namespace GeographicLib {
using namespace std;
void GeodesicLineExact::LineInit(const GeodesicExact& g,
real lat1, real lon1,
real azi1, real salp1, real calp1,
unsigned caps) {
tiny_ = g.tiny_;
_lat1 = Math::LatFix(lat1);
_lon1 = lon1;
_azi1 = azi1;
_salp1 = salp1;
_calp1 = calp1;
_a = g._a;
_f = g._f;
_b = g._b;
_c2 = g._c2;
_f1 = g._f1;
_e2 = g._e2;
// Always allow latitude and azimuth and unrolling of longitude
_caps = caps | LATITUDE | AZIMUTH | LONG_UNROLL;
real cbet1, sbet1;
Math::sincosd(Math::AngRound(_lat1), sbet1, cbet1); sbet1 *= _f1;
// Ensure cbet1 = +epsilon at poles
Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1);
_dn1 = (_f >= 0 ? sqrt(1 + g._ep2 * Math::sq(sbet1)) :
sqrt(1 - _e2 * Math::sq(cbet1)) / _f1);
// Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
_salp0 = _salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
// Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
// is slightly better (consider the case salp1 = 0).
_calp0 = Math::hypot(_calp1, _salp1 * sbet1);
// Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
// sig = 0 is nearest northward crossing of equator.
// With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
// With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
// With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
// Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
// With alp0 in (0, pi/2], quadrants for sig and omg coincide.
// No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
// With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
_ssig1 = sbet1; _somg1 = _salp0 * sbet1;
_csig1 = _comg1 = sbet1 != 0 || _calp1 != 0 ? cbet1 * _calp1 : 1;
// Without normalization we have schi1 = somg1.
_cchi1 = _f1 * _dn1 * _comg1;
Math::norm(_ssig1, _csig1); // sig1 in (-pi, pi]
// Math::norm(_somg1, _comg1); -- don't need to normalize!
// Math::norm(_schi1, _cchi1); -- don't need to normalize!
_k2 = Math::sq(_calp0) * g._ep2;
_E.Reset(-_k2, -g._ep2, 1 + _k2, 1 + g._ep2);
if (_caps & CAP_E) {
_E0 = _E.E() / (Math::pi() / 2);
_E1 = _E.deltaE(_ssig1, _csig1, _dn1);
real s = sin(_E1), c = cos(_E1);
// tau1 = sig1 + B11
_stau1 = _ssig1 * c + _csig1 * s;
_ctau1 = _csig1 * c - _ssig1 * s;
// Not necessary because Einv inverts E
// _E1 = -_E.deltaEinv(_stau1, _ctau1);
}
if (_caps & CAP_D) {
_D0 = _E.D() / (Math::pi() / 2);
_D1 = _E.deltaD(_ssig1, _csig1, _dn1);
}
if (_caps & CAP_H) {
_H0 = _E.H() / (Math::pi() / 2);
_H1 = _E.deltaH(_ssig1, _csig1, _dn1);
}
if (_caps & CAP_C4) {
real eps = _k2 / (2 * (1 + sqrt(1 + _k2)) + _k2);
g.C4f(eps, _C4a);
// Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
_A4 = Math::sq(_a) * _calp0 * _salp0 * _e2;
_B41 = GeodesicExact::CosSeries(_ssig1, _csig1, _C4a, nC4_);
}
_a13 = _s13 = Math::NaN();
}
GeodesicLineExact::GeodesicLineExact(const GeodesicExact& g,
real lat1, real lon1, real azi1,
unsigned caps) {
azi1 = Math::AngNormalize(azi1);
real salp1, calp1;
// Guard against underflow in salp0. Also -0 is converted to +0.
Math::sincosd(Math::AngRound(azi1), salp1, calp1);
LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
}
GeodesicLineExact::GeodesicLineExact(const GeodesicExact& g,
real lat1, real lon1,
real azi1, real salp1, real calp1,
unsigned caps,
bool arcmode, real s13_a13) {
LineInit(g, lat1, lon1, azi1, salp1, calp1, caps);
GenSetDistance(arcmode, s13_a13);
}
Math::real GeodesicLineExact::GenPosition(bool arcmode, real s12_a12,
unsigned outmask,
real& lat2, real& lon2, real& azi2,
real& s12, real& m12,
real& M12, real& M21,
real& S12) const {
outmask &= _caps & OUT_MASK;
if (!( Init() && (arcmode || (_caps & (OUT_MASK & DISTANCE_IN))) ))
// Uninitialized or impossible distance calculation requested
return Math::NaN();
// Avoid warning about uninitialized B12.
real sig12, ssig12, csig12, E2 = 0, AB1 = 0;
if (arcmode) {
// Interpret s12_a12 as spherical arc length
sig12 = s12_a12 * Math::degree();
real s12a = abs(s12_a12);
s12a -= 180 * floor(s12a / 180);
ssig12 = s12a == 0 ? 0 : sin(sig12);
csig12 = s12a == 90 ? 0 : cos(sig12);
} else {
// Interpret s12_a12 as distance
real
tau12 = s12_a12 / (_b * _E0),
s = sin(tau12),
c = cos(tau12);
// tau2 = tau1 + tau12
E2 = - _E.deltaEinv(_stau1 * c + _ctau1 * s, _ctau1 * c - _stau1 * s);
sig12 = tau12 - (E2 - _E1);
ssig12 = sin(sig12);
csig12 = cos(sig12);
}
real ssig2, csig2, sbet2, cbet2, salp2, calp2;
// sig2 = sig1 + sig12
ssig2 = _ssig1 * csig12 + _csig1 * ssig12;
csig2 = _csig1 * csig12 - _ssig1 * ssig12;
real dn2 = _E.Delta(ssig2, csig2);
if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) {
if (arcmode) {
E2 = _E.deltaE(ssig2, csig2, dn2);
}
AB1 = _E0 * (E2 - _E1);
}
// sin(bet2) = cos(alp0) * sin(sig2)
sbet2 = _calp0 * ssig2;
// Alt: cbet2 = hypot(csig2, salp0 * ssig2);
cbet2 = Math::hypot(_salp0, _calp0 * csig2);
if (cbet2 == 0)
// I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case
cbet2 = csig2 = tiny_;
// tan(alp0) = cos(sig2)*tan(alp2)
salp2 = _salp0; calp2 = _calp0 * csig2; // No need to normalize
if (outmask & DISTANCE)
s12 = arcmode ? _b * (_E0 * sig12 + AB1) : s12_a12;
if (outmask & LONGITUDE) {
real somg2 = _salp0 * ssig2, comg2 = csig2, // No need to normalize
E = Math::copysign(real(1), _salp0); // east-going?
// Without normalization we have schi2 = somg2.
real cchi2 = _f1 * dn2 * comg2;
real chi12 = outmask & LONG_UNROLL
? E * (sig12
- (atan2( ssig2, csig2) - atan2( _ssig1, _csig1))
+ (atan2(E * somg2, cchi2) - atan2(E * _somg1, _cchi1)))
: atan2(somg2 * _cchi1 - cchi2 * _somg1,
cchi2 * _cchi1 + somg2 * _somg1);
real lam12 = chi12 -
_e2/_f1 * _salp0 * _H0 *
(sig12 + (_E.deltaH(ssig2, csig2, dn2) - _H1));
real lon12 = lam12 / Math::degree();
lon2 = outmask & LONG_UNROLL ? _lon1 + lon12 :
Math::AngNormalize(Math::AngNormalize(_lon1) +
Math::AngNormalize(lon12));
}
if (outmask & LATITUDE)
lat2 = Math::atan2d(sbet2, _f1 * cbet2);
if (outmask & AZIMUTH)
azi2 = Math::atan2d(salp2, calp2);
if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
real J12 = _k2 * _D0 * (sig12 + (_E.deltaD(ssig2, csig2, dn2) - _D1));
if (outmask & REDUCEDLENGTH)
// Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
// accurate cancellation in the case of coincident points.
m12 = _b * ((dn2 * (_csig1 * ssig2) - _dn1 * (_ssig1 * csig2))
- _csig1 * csig2 * J12);
if (outmask & GEODESICSCALE) {
real t = _k2 * (ssig2 - _ssig1) * (ssig2 + _ssig1) / (_dn1 + dn2);
M12 = csig12 + (t * ssig2 - csig2 * J12) * _ssig1 / _dn1;
M21 = csig12 - (t * _ssig1 - _csig1 * J12) * ssig2 / dn2;
}
}
if (outmask & AREA) {
real
B42 = GeodesicExact::CosSeries(ssig2, csig2, _C4a, nC4_);
real salp12, calp12;
if (_calp0 == 0 || _salp0 == 0) {
// alp12 = alp2 - alp1, used in atan2 so no need to normalize
salp12 = salp2 * _calp1 - calp2 * _salp1;
calp12 = calp2 * _calp1 + salp2 * _salp1;
// We used to include here some patch up code that purported to deal
// with nearly meridional geodesics properly. However, this turned out
// to be wrong once _salp1 = -0 was allowed (via
// GeodesicExact::InverseLine). In fact, the calculation of {s,c}alp12
// was already correct (following the IEEE rules for handling signed
// zeros). So the patch up code was unnecessary (as well as
// dangerous).
} else {
// tan(alp) = tan(alp0) * sec(sig)
// tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
// = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
// If csig12 > 0, write
// csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
// else
// csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
// No need to normalize
salp12 = _calp0 * _salp0 *
(csig12 <= 0 ? _csig1 * (1 - csig12) + ssig12 * _ssig1 :
ssig12 * (_csig1 * ssig12 / (1 + csig12) + _ssig1));
calp12 = Math::sq(_salp0) + Math::sq(_calp0) * _csig1 * csig2;
}
S12 = _c2 * atan2(salp12, calp12) + _A4 * (B42 - _B41);
}
return arcmode ? s12_a12 : sig12 / Math::degree();
}
void GeodesicLineExact::SetDistance(real s13) {
_s13 = s13;
real t;
// This will set _a13 to NaN if the GeodesicLineExact doesn't have the
// DISTANCE_IN capability.
_a13 = GenPosition(false, _s13, 0u, t, t, t, t, t, t, t, t);
}
void GeodesicLineExact::SetArc(real a13) {
_a13 = a13;
// In case the GeodesicLineExact doesn't have the DISTANCE capability.
_s13 = Math::NaN();
real t;
GenPosition(true, _a13, DISTANCE, t, t, t, _s13, t, t, t, t);
}
void GeodesicLineExact::GenSetDistance(bool arcmode, real s13_a13) {
arcmode ? SetArc(s13_a13) : SetDistance(s13_a13);
}
} // namespace GeographicLib