Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,446 Bytes
0a639cb 165abce 3c8cbc9 0a639cb 165abce 0a639cb 165abce 3c8cbc9 0a639cb 165abce 0a639cb 165abce 0a639cb 3c8cbc9 0a639cb 3c8cbc9 0a639cb 165abce 0a639cb 3c8cbc9 165abce 0a639cb 165abce 3c8cbc9 0a639cb 3c8cbc9 0a639cb 3c8cbc9 0a639cb 165abce 0a639cb 3c8cbc9 165abce 3c8cbc9 165abce 0a639cb 3c8cbc9 0a639cb 3c8cbc9 165abce 3c8cbc9 0a639cb 165abce 3c8cbc9 165abce 3c8cbc9 165abce 3c8cbc9 0a639cb 165abce 3c8cbc9 165abce 3c8cbc9 165abce 3c8cbc9 165abce 3c8cbc9 0a639cb 165abce 3c8cbc9 0a639cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import os
import torch
import numpy as np
import time
import matplotlib.pyplot as plt
from typing import Tuple, List
from statistics import mean, median, stdev
from lib import (
normalize_text,
chunk_text,
count_tokens,
load_module_from_file,
download_model_files,
list_voice_files,
download_voice_files,
ensure_dir,
concatenate_audio_chunks
)
import spaces
class TTSModel:
"""GPU-accelerated TTS model manager"""
def __init__(self):
self.model = None
self.voices_dir = "voices"
self.model_repo = "hexgrad/Kokoro-82M"
ensure_dir(self.voices_dir)
self.model_path = None
# Load required modules
py_modules = ["istftnet", "plbert", "models", "kokoro"]
module_files = download_model_files(self.model_repo, [f"{m}.py" for m in py_modules])
for module_name, file_path in zip(py_modules, module_files):
load_module_from_file(module_name, file_path)
# Import required functions from kokoro module
kokoro = __import__("kokoro")
self.generate = kokoro.generate
self.build_model = __import__("models").build_model
def initialize(self) -> bool:
"""Initialize model and download voices"""
try:
print("Initializing model...")
# Download model files
model_files = download_model_files(
self.model_repo,
["kokoro-v0_19.pth", "config.json"]
)
self.model_path = model_files[0] # kokoro-v0_19.pth
# Download voice files
download_voice_files(self.model_repo, "voices", self.voices_dir)
# Get list of available voices
available_voices = self.list_voices()
print("Model initialization complete")
return True
except Exception as e:
print(f"Error initializing model: {str(e)}")
return False
def ensure_voice_downloaded(self, voice_name: str) -> bool:
"""Ensure specific voice is downloaded"""
try:
voice_path = os.path.join(self.voices_dir, "voices", f"{voice_name}.pt")
if not os.path.exists(voice_path):
print(f"Downloading voice {voice_name}.pt...")
download_voice_files(self.model_repo, [f"{voice_name}.pt"], self.voices_dir)
return True
except Exception as e:
print(f"Error downloading voice {voice_name}: {str(e)}")
return False
def list_voices(self) -> List[str]:
"""List available voices"""
voices = []
voices_subdir = os.path.join(self.voices_dir, "voices")
if os.path.exists(voices_subdir):
for file in os.listdir(voices_subdir):
if file.endswith(".pt"):
voice_name = file[:-3]
voices.append(voice_name)
return voices
# def _ensure_model_on_gpu(self) -> None:
# """Ensure model is on GPU and stays there"""
# if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
# print("Moving model to GPU...")
# with torch.cuda.device(0):
# torch.cuda.set_device(0)
# if hasattr(self.model, 'to'):
# self.model.to('cuda')
# else:
# for name in self.model:
# if isinstance(self.model[name], torch.Tensor):
# self.model[name] = self.model[name].cuda()
# self._model_on_gpu = True
def _generate_audio(self, text: str, voicepack: torch.Tensor, lang: str, speed: float) -> np.ndarray:
"""GPU-accelerated audio generation"""
try:
with torch.cuda.device(0):
torch.cuda.set_device(0)
try:
# Build model if needed
if self.model is None:
print("Building model...")
device = torch.device('cuda')
self.model = self.build_model(self.model_path, device=device)
if self.model is None:
raise ValueError("Failed to build model")
print("Model built successfully")
# Move model to GPU if needed
if not hasattr(self.model, '_on_gpu'):
print("Moving model to GPU...")
if hasattr(self.model, 'to'):
self.model = self.model.to('cuda')
else:
for name in self.model:
if isinstance(self.model[name], torch.Tensor):
self.model[name] = self.model[name].cuda()
self.model._on_gpu = True
except Exception as e:
print(f"Error building model: {str(e)}")
print("Attempting to continue")
raise e
# Move voicepack to GPU
voicepack = voicepack.cuda()
# Run generation with everything on GPU
audio, _ = self.generate(
self.model,
text,
voicepack,
lang=lang,
speed=speed
)
return audio
except Exception as e:
print(f"Error in audio generation: {str(e)}")
raise e
@spaces.GPU(duration=None) # Duration will be set by the UI
def generate_speech(self, text: str, voice_names: list[str], speed: float = 1.0, gpu_timeout: int = 60, progress_callback=None, progress_state=None, progress=None) -> Tuple[np.ndarray, float]:
"""Generate speech from text. Returns (audio_array, duration)
Args:
text: Input text to convert to speech
voice_name: Name of voice to use
speed: Speech speed multiplier
progress_callback: Optional callback function(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress)
progress_state: Dictionary tracking generation progress metrics
progress: Progress callback from Gradio
"""
try:
start_time = time.time()
with torch.cuda.device(0):
torch.cuda.set_device(0)
if not text or not voice_names:
raise ValueError("Text and voice name are required")
# Build model directly on GPU
# Build model if needed
if self.model is None:
print("Building model...")
self.model = self.build_model(self.model_path, device='cuda')
if self.model is None:
raise ValueError("Failed to build model")
print("Model built successfully")
# Move model to GPU if needed
if not hasattr(self.model, '_on_gpu'):
print("Moving model to GPU...")
if hasattr(self.model, 'to'):
self.model = self.model.to('cuda')
else:
for name in self.model:
if isinstance(self.model[name], torch.Tensor):
self.model[name] = self.model[name].cuda()
self.model._on_gpu = True
t_voices = []
if isinstance(voice_names, list) and len(voice_names) > 1:
for voice in voice_names:
try:
voice_path = os.path.join(self.voices_dir, "voices", f"{voice}.pt")
voicepack = torch.load(voice_path, weights_only=True)
t_voices.append(voicepack)
except Exception as e:
print(f"Warning: Failed to load voice {voice}: {str(e)}")
# Combine voices by taking mean
voicepack = torch.mean(torch.stack(t_voices), dim=0)
voice_name = "_".join(voice_names)
else:
voice_name = voice_names[0]
voice_path = os.path.join(self.voices_dir, "voices", f"{voice_name}.pt")
voicepack = torch.load(voice_path, weights_only=True)
# Count tokens and normalize text
total_tokens = count_tokens(text)
text = normalize_text(text)
if not text:
raise ValueError("Text is empty after normalization")
# Break text into chunks for better memory management
chunks = chunk_text(text)
print(f"Processing {len(chunks)} chunks...")
# Process all chunks within same GPU context
audio_chunks = []
chunk_times = []
chunk_sizes = [] # Store chunk lengths
total_processed_tokens = 0
total_processed_time = 0
for i, chunk in enumerate(chunks):
chunk_start = time.time()
chunk_audio = self._generate_audio(
text=chunk,
voicepack=voicepack,
lang=voice_name[0],
speed=speed
)
chunk_time = time.time() - chunk_start
# Calculate per-chunk metrics
chunk_tokens = count_tokens(chunk)
chunk_tokens_per_sec = chunk_tokens / chunk_time
# Update totals for overall stats
total_processed_tokens += chunk_tokens
total_processed_time += chunk_time
# Calculate processing speed metrics
chunk_duration = len(chunk_audio) / 24000 # audio duration in seconds
rtf = chunk_time / chunk_duration
times_faster = 1 / rtf
chunk_times.append(chunk_time)
chunk_sizes.append(len(chunk))
print(f"Chunk {i+1}/{len(chunks)} processed in {chunk_time:.2f}s")
print(f"Current tokens/sec: {chunk_tokens_per_sec:.2f}")
print(f"Real-time factor: {rtf:.2f}x")
print(f"{times_faster:.1f}x faster than real-time")
audio_chunks.append(chunk_audio)
# Call progress callback if provided
if progress_callback:
progress_callback(
i + 1, # chunk_num
len(chunks), # total_chunks
chunk_tokens_per_sec, # Pass per-chunk rate instead of cumulative
rtf,
progress_state, # Added
start_time, # Added
gpu_timeout, # Use the timeout value from UI
progress # Added
)
# Concatenate audio chunks
audio = concatenate_audio_chunks(audio_chunks)
# Return audio and metrics
return (
audio, # Audio array
len(audio) / 24000, # Duration
{
"chunk_times": chunk_times,
"chunk_sizes": chunk_sizes,
"tokens_per_sec": [float(x) for x in progress_state["tokens_per_sec"]],
"rtf": [float(x) for x in progress_state["rtf"]],
"total_tokens": total_tokens,
"total_time": time.time() - start_time
}
)
except Exception as e:
print(f"Error generating speech: {str(e)}")
raise
|