import os import random import google.generativeai as genai import gradio as gr import openai from anthropic import Anthropic from openai import OpenAI # Add explicit OpenAI import def get_all_models(): """Get all available models from the registries.""" return [ "SambaNova: Meta-Llama-3.2-1B-Instruct", "SambaNova: Meta-Llama-3.2-3B-Instruct", "SambaNova: Llama-3.2-11B-Vision-Instruct", "SambaNova: Llama-3.2-90B-Vision-Instruct", "SambaNova: Meta-Llama-3.1-8B-Instruct", "SambaNova: Meta-Llama-3.1-70B-Instruct", "SambaNova: Meta-Llama-3.1-405B-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct", "Hyperbolic: meta-llama/Llama-3.2-3B-Instruct", "Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct", "Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct", "Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct", "Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B", "Hyperbolic: Qwen/Qwen2.5-72B-Instruct", "Hyperbolic: deepseek-ai/DeepSeek-V2.5", "Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct", ] def generate_discussion_prompt(original_question: str, previous_responses: list[str]) -> str: """Generate a prompt for models to discuss and build upon previous responses. """ prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}" Previous responses from other AI models: {chr(10).join(f"- {response}" for response in previous_responses)} Please provide your perspective while: 1. Acknowledging key insights from previous responses 2. Adding any missing important points 3. Respectfully noting if you disagree with anything and explaining why 4. Building towards a complete answer Keep your response focused and concise (max 3-4 paragraphs).""" return prompt def generate_consensus_prompt(original_question: str, discussion_history: list[str]) -> str: """Generate a prompt for final consensus building.""" return f"""Review this multi-AI discussion about: "{original_question}" Discussion history: {chr(10).join(discussion_history)} As a final synthesizer, please: 1. Identify the key points where all models agreed 2. Explain how any disagreements were resolved 3. Present a clear, unified answer that represents our collective best understanding 4. Note any remaining uncertainties or caveats Keep the final consensus concise but complete.""" def chat_with_openai(model: str, messages: list[dict], api_key: str | None) -> str: import openai client = openai.OpenAI(api_key=api_key) response = client.chat.completions.create(model=model, messages=messages) return response.choices[0].message.content def chat_with_anthropic(messages: list[dict], api_key: str | None) -> str: """Chat with Anthropic's Claude model.""" client = Anthropic(api_key=api_key) response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024) return response.content[0].text def chat_with_gemini(messages: list[dict], api_key: str | None) -> str: """Chat with Gemini Pro model.""" genai.configure(api_key=api_key) model = genai.GenerativeModel("gemini-pro") # Convert messages to Gemini format gemini_messages = [] for msg in messages: role = "user" if msg["role"] == "user" else "model" gemini_messages.append({"role": role, "parts": [msg["content"]]}) response = model.generate_content([m["parts"][0] for m in gemini_messages]) return response.text def chat_with_sambanova( messages: list[dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct" ) -> str: """Chat with SambaNova's models using their OpenAI-compatible API.""" client = openai.OpenAI( api_key=api_key, base_url="https://api.sambanova.ai/v1", ) response = client.chat.completions.create( model=model_name, messages=messages, temperature=0.1, top_p=0.1, # Use the specific model name passed in ) return response.choices[0].message.content def chat_with_hyperbolic( messages: list[dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct" ) -> str: """Chat with Hyperbolic's models using their OpenAI-compatible API.""" client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1") # Add system message to the start of the messages list full_messages = [ {"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."}, *messages, ] response = client.chat.completions.create( model=model_name, # Use the specific model name passed in messages=full_messages, temperature=0.7, max_tokens=1024, ) return response.choices[0].message.content def multi_model_consensus( question: str, selected_models: list[str], rounds: int = 3, progress: gr.Progress = gr.Progress() ) -> list[tuple[str, str]]: if not selected_models: raise gr.Error("Please select at least one model to chat with.") chat_history = [] discussion_history = [] # Initial responses progress(0, desc="Getting initial responses...") initial_responses = [] for i, model in enumerate(selected_models): provider, model_name = model.split(": ", 1) try: if provider == "Anthropic": api_key = os.getenv("ANTHROPIC_API_KEY") response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key) elif provider == "SambaNova": api_key = os.getenv("SAMBANOVA_API_KEY") response = chat_with_sambanova( messages=[ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": question}, ], api_key=api_key, ) elif provider == "Hyperbolic": # Add Hyperbolic case api_key = os.getenv("HYPERBOLIC_API_KEY") response = chat_with_hyperbolic(messages=[{"role": "user", "content": question}], api_key=api_key) else: # Gemini api_key = os.getenv("GEMINI_API_KEY") response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key) initial_responses.append(f"{model}: {response}") discussion_history.append(f"Initial response from {model}:\n{response}") chat_history.append((f"Initial response from {model}", response)) except Exception as e: chat_history.append((f"Error from {model}", str(e))) # Discussion rounds for round_num in range(rounds): progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...") round_responses = [] random.shuffle(selected_models) # Randomize order each round for model in selected_models: provider, model_name = model.split(": ", 1) try: discussion_prompt = generate_discussion_prompt(question, discussion_history) if provider == "Anthropic": api_key = os.getenv("ANTHROPIC_API_KEY") response = chat_with_anthropic( messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key ) elif provider == "SambaNova": api_key = os.getenv("SAMBANOVA_API_KEY") response = chat_with_sambanova( messages=[ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": discussion_prompt}, ], api_key=api_key, ) elif provider == "Hyperbolic": # Add Hyperbolic case api_key = os.getenv("HYPERBOLIC_API_KEY") response = chat_with_hyperbolic( messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key ) else: # Gemini api_key = os.getenv("GEMINI_API_KEY") response = chat_with_gemini( messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key ) round_responses.append(f"{model}: {response}") discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}") chat_history.append((f"Round {round_num + 1} - {model}", response)) except Exception as e: chat_history.append((f"Error from {model} in round {round_num + 1}", str(e))) # Final consensus progress(0.9, desc="Building final consensus...") model = selected_models[0] provider, model_name = model.split(": ", 1) try: consensus_prompt = generate_consensus_prompt(question, discussion_history) if provider == "Anthropic": api_key = os.getenv("ANTHROPIC_API_KEY") final_consensus = chat_with_anthropic( messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key ) elif provider == "SambaNova": api_key = os.getenv("SAMBANOVA_API_KEY") final_consensus = chat_with_sambanova( messages=[ {"role": "system", "content": "You are a helpful assistant"}, {"role": "user", "content": consensus_prompt}, ], api_key=api_key, ) elif provider == "Hyperbolic": # Add Hyperbolic case api_key = os.getenv("HYPERBOLIC_API_KEY") final_consensus = chat_with_hyperbolic( messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key ) else: # Gemini api_key = os.getenv("GEMINI_API_KEY") final_consensus = chat_with_gemini( messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key ) except Exception as e: final_consensus = f"Error getting consensus from {model}: {e!s}" chat_history.append(("Final Consensus", final_consensus)) progress(1.0, desc="Done!") return chat_history with gr.Blocks() as demo: gr.Markdown("# Experimental Multi-Model Consensus Chat") gr.Markdown( """Select multiple models to collaborate on answering your question. The models will discuss with each other and attempt to reach a consensus. Maximum 3 models can be selected at once.""" ) with gr.Row(): with gr.Column(): model_selector = gr.Dropdown( choices=get_all_models(), multiselect=True, label="Select Models (max 3)", info="Choose up to 3 models to participate in the discussion", value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"], max_choices=3, ) rounds_slider = gr.Slider( minimum=1, maximum=2, value=1, step=1, label="Discussion Rounds", info="Number of rounds of discussion between models", ) chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion") msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...") def respond(message, selected_models, rounds): chat_history = multi_model_consensus(message, selected_models, rounds) return chat_history msg.submit(respond, [msg, model_selector, rounds_slider], [chatbot], api_name="consensus_chat") for fn in demo.fns.values(): fn.api_name = False if __name__ == "__main__": demo.launch()