Spaces:
Runtime error
Runtime error
# Copyright (c) 2023-2024 DeepSeek. | |
# | |
# Permission is hereby granted, free of charge, to any person obtaining a copy of | |
# this software and associated documentation files (the "Software"), to deal in | |
# the Software without restriction, including without limitation the rights to | |
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
# the Software, and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
# -*- coding:utf-8 -*- | |
import base64 | |
from io import BytesIO | |
import spaces | |
import gradio as gr | |
import torch | |
from app_modules.gradio_utils import ( | |
cancel_outputing, | |
delete_last_conversation, | |
reset_state, | |
reset_textbox, | |
transfer_input, | |
wrap_gen_fn, | |
) | |
from app_modules.overwrites import reload_javascript | |
from app_modules.presets import CONCURRENT_COUNT, description, description_top, title | |
from app_modules.utils import configure_logger, is_variable_assigned, strip_stop_words | |
from inference import ( | |
convert_conversation_to_prompts, | |
deepseek_generate, | |
load_model, | |
) | |
from app_modules.conversation import SeparatorStyle | |
def load_models(): | |
models = { | |
"DeepSeek-VL 7B": "deepseek-ai/deepseek-vl-7b-chat", | |
} | |
for model_name in models: | |
models[model_name] = load_model(models[model_name]) | |
return models | |
logger = configure_logger() | |
models = load_models() | |
MODELS = sorted(list(models.keys())) | |
def generate_prompt_with_history( | |
text, image, history, vl_chat_processor, tokenizer, max_length=2048 | |
): | |
""" | |
Generate a prompt with history for the deepseek application. | |
Args: | |
text (str): The text prompt. | |
image (str): The image prompt. | |
history (list): List of previous conversation messages. | |
tokenizer: The tokenizer used for encoding the prompt. | |
max_length (int): The maximum length of the prompt. | |
Returns: | |
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None. | |
""" | |
sft_format = "deepseek" | |
user_role_ind = 0 | |
bot_role_ind = 1 | |
# Initialize conversation | |
conversation = vl_chat_processor.new_chat_template() | |
if history: | |
conversation.messages = history | |
if image is not None: | |
if "<image_placeholder>" not in text: | |
text = ( | |
"<image_placeholder>" + "\n" + text | |
) # append the <image_placeholder> in a new line after the text prompt | |
text = (text, image) | |
conversation.append_message(conversation.roles[user_role_ind], text) | |
conversation.append_message(conversation.roles[bot_role_ind], "") | |
# Create a copy of the conversation to avoid history truncation in the UI | |
conversation_copy = conversation.copy() | |
logger.info("=" * 80) | |
logger.info(get_prompt(conversation)) | |
rounds = len(conversation.messages) // 2 | |
for _ in range(rounds): | |
current_prompt = get_prompt(conversation) | |
current_prompt = ( | |
current_prompt.replace("</s>", "") | |
if sft_format == "deepseek" | |
else current_prompt | |
) | |
if current_prompt.count("<image_placeholder>") > 2: | |
for _ in range(len(conversation_copy.messages) - 2): | |
conversation_copy.messages.pop(0) | |
return conversation_copy | |
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length: | |
return conversation_copy | |
if len(conversation.messages) % 2 != 0: | |
gr.Error("The messages between user and assistant are not paired.") | |
return | |
try: | |
for _ in range(2): # pop out two messages in a row | |
conversation.messages.pop(0) | |
except IndexError: | |
gr.Error("Input text processing failed, unable to respond in this round.") | |
return None | |
gr.Error("Prompt could not be generated within max_length limit.") | |
return None | |
def to_gradio_chatbot(conv): | |
"""Convert the conversation to gradio chatbot format.""" | |
ret = [] | |
for i, (role, msg) in enumerate(conv.messages[conv.offset :]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
msg, image = msg | |
if isinstance(image, str): | |
with open(image, "rb") as f: | |
data = f.read() | |
img_b64_str = base64.b64encode(data).decode() | |
image_str = f'<video src="data:video/mp4;base64,{img_b64_str}" controls width="426" height="240"></video>' | |
msg = msg.replace("\n".join(["<image_placeholder>"] * 4), image_str) | |
else: | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' | |
msg = msg.replace("<image_placeholder>", img_str) | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def to_gradio_history(conv): | |
"""Convert the conversation to gradio history state.""" | |
return conv.messages[conv.offset :] | |
def get_prompt(conv) -> str: | |
"""Get the prompt for generation.""" | |
system_prompt = conv.system_template.format(system_message=conv.system_message) | |
if conv.sep_style == SeparatorStyle.DeepSeek: | |
seps = [conv.sep, conv.sep2] | |
if system_prompt == "" or system_prompt is None: | |
ret = "" | |
else: | |
ret = system_prompt + seps[0] | |
for i, (role, message) in enumerate(conv.messages): | |
if message: | |
if type(message) is tuple: # multimodal message | |
message, _ = message | |
ret += role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
return ret | |
else: | |
return conv.get_prompt | |
def predict( | |
text, | |
image, | |
chatbot, | |
history, | |
top_p, | |
temperature, | |
repetition_penalty, | |
max_length_tokens, | |
max_context_length_tokens, | |
model_select_dropdown, | |
): | |
""" | |
Function to predict the response based on the user's input and selected model. | |
Parameters: | |
user_text (str): The input text from the user. | |
user_image (str): The input image from the user. | |
chatbot (str): The chatbot's name. | |
history (str): The history of the chat. | |
top_p (float): The top-p parameter for the model. | |
temperature (float): The temperature parameter for the model. | |
max_length_tokens (int): The maximum length of tokens for the model. | |
max_context_length_tokens (int): The maximum length of context tokens for the model. | |
model_select_dropdown (str): The selected model from the dropdown. | |
Returns: | |
generator: A generator that yields the chatbot outputs, history, and status. | |
""" | |
print("running the prediction function") | |
try: | |
tokenizer, vl_gpt, vl_chat_processor = models[model_select_dropdown] | |
if text == "": | |
yield chatbot, history, "Empty context." | |
return | |
except KeyError: | |
yield [[text, "No Model Found"]], [], "No Model Found" | |
return | |
conversation = generate_prompt_with_history( | |
text, | |
image, | |
history, | |
vl_chat_processor, | |
tokenizer, | |
max_length=max_context_length_tokens, | |
) | |
prompts = convert_conversation_to_prompts(conversation) | |
stop_words = conversation.stop_str | |
gradio_chatbot_output = to_gradio_chatbot(conversation) | |
full_response = "" | |
with torch.no_grad(): | |
for x in deepseek_generate( | |
prompts=prompts, | |
vl_gpt=vl_gpt, | |
vl_chat_processor=vl_chat_processor, | |
tokenizer=tokenizer, | |
stop_words=stop_words, | |
max_length=max_length_tokens, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
top_p=top_p, | |
): | |
full_response += x | |
response = strip_stop_words(full_response, stop_words) | |
conversation.update_last_message(response) | |
gradio_chatbot_output[-1][1] = response | |
yield gradio_chatbot_output, to_gradio_history( | |
conversation | |
), "Generating..." | |
print("flushed result to gradio") | |
torch.cuda.empty_cache() | |
if is_variable_assigned("x"): | |
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}") | |
print( | |
f"temperature: {temperature}, top_p: {top_p}, repetition_penalty: {repetition_penalty}, max_length_tokens: {max_length_tokens}" | |
) | |
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success" | |
def retry( | |
text, | |
image, | |
chatbot, | |
history, | |
top_p, | |
temperature, | |
repetition_penalty, | |
max_length_tokens, | |
max_context_length_tokens, | |
model_select_dropdown, | |
): | |
if len(history) == 0: | |
yield (chatbot, history, "Empty context") | |
return | |
chatbot.pop() | |
history.pop() | |
text = history.pop()[-1] | |
if type(text) is tuple: | |
text, image = text | |
yield from predict( | |
text, | |
image, | |
chatbot, | |
history, | |
top_p, | |
temperature, | |
repetition_penalty, | |
max_length_tokens, | |
max_context_length_tokens, | |
model_select_dropdown, | |
) | |
def build_demo(MODELS): | |
with open("assets/custom.css", "r", encoding="utf-8") as f: | |
customCSS = f.read() | |
with gr.Blocks(theme=gr.themes.Soft(spacing_size="md")) as demo: | |
history = gr.State([]) | |
input_text = gr.State() | |
input_image = gr.State() | |
with gr.Row(): | |
gr.HTML(title) | |
status_display = gr.Markdown("Success", elem_id="status_display") | |
gr.Markdown(description_top) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
chatbot = gr.Chatbot( | |
elem_id="deepseek_chatbot", | |
show_share_button=True, | |
likeable=True, | |
bubble_full_width=False, | |
height=600, | |
) | |
with gr.Row(): | |
with gr.Column(scale=4): | |
text_box = gr.Textbox( | |
show_label=False, placeholder="Enter text", container=False | |
) | |
with gr.Column( | |
min_width=70, | |
): | |
submitBtn = gr.Button("Send") | |
with gr.Column( | |
min_width=70, | |
): | |
cancelBtn = gr.Button("Stop") | |
with gr.Row(): | |
emptyBtn = gr.Button( | |
"π§Ή New Conversation", | |
) | |
retryBtn = gr.Button("π Regenerate") | |
delLastBtn = gr.Button("ποΈ Remove Last Turn") | |
with gr.Column(): | |
image_box = gr.Image(type="pil") | |
with gr.Tab(label="Parameter Setting") as parameter_row: | |
top_p = gr.Slider( | |
minimum=-0, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
interactive=True, | |
label="Top-p", | |
) | |
temperature = gr.Slider( | |
minimum=0, | |
maximum=1.0, | |
value=0.1, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
repetition_penalty = gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
interactive=True, | |
label="Repetition penalty", | |
) | |
max_length_tokens = gr.Slider( | |
minimum=0, | |
maximum=2048, | |
value=2048, | |
step=8, | |
interactive=True, | |
label="Max Generation Tokens", | |
) | |
max_context_length_tokens = gr.Slider( | |
minimum=0, | |
maximum=2048, | |
value=2048, | |
step=128, | |
interactive=True, | |
label="Max History Tokens", | |
) | |
model_select_dropdown = gr.Dropdown( | |
label="Select Models", | |
choices=MODELS, | |
multiselect=False, | |
value=MODELS[0], | |
interactive=True, | |
) | |
examples_list = [ | |
[ | |
"examples/rap.jpeg", | |
"Can you write me a master rap song that rhymes very well based on this image?", | |
], | |
[ | |
"examples/app.png", | |
"What is this app about?", | |
], | |
[ | |
"examples/pipeline.png", | |
"Help me write a python code based on the image.", | |
], | |
[ | |
"examples/chart.png", | |
"Could you help me to re-draw this picture with python codes?", | |
], | |
[ | |
"examples/mirror.png", | |
"How many people are there in the image. Why?", | |
], | |
[ | |
"examples/puzzle.png", | |
"Can this 2 pieces combine together?", | |
], | |
] | |
gr.Examples(examples=examples_list, inputs=[image_box, text_box]) | |
gr.Markdown(description) | |
input_widgets = [ | |
input_text, | |
input_image, | |
chatbot, | |
history, | |
top_p, | |
temperature, | |
repetition_penalty, | |
max_length_tokens, | |
max_context_length_tokens, | |
model_select_dropdown, | |
] | |
output_widgets = [chatbot, history, status_display] | |
transfer_input_args = dict( | |
fn=transfer_input, | |
inputs=[text_box, image_box], | |
outputs=[input_text, input_image, text_box, image_box, submitBtn], | |
show_progress=True, | |
) | |
predict_args = dict( | |
fn=predict, | |
inputs=input_widgets, | |
outputs=output_widgets, | |
show_progress=True, | |
) | |
retry_args = dict( | |
fn=retry, | |
inputs=input_widgets, | |
outputs=output_widgets, | |
show_progress=True, | |
) | |
reset_args = dict( | |
fn=reset_textbox, inputs=[], outputs=[text_box, status_display] | |
) | |
predict_events = [ | |
text_box.submit(**transfer_input_args).then(**predict_args), | |
submitBtn.click(**transfer_input_args).then(**predict_args), | |
] | |
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True) | |
emptyBtn.click(**reset_args) | |
retryBtn.click(**retry_args) | |
delLastBtn.click( | |
delete_last_conversation, | |
[chatbot, history], | |
output_widgets, | |
show_progress=True, | |
) | |
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events) | |
return demo | |
if __name__ == "__main__": | |
demo = build_demo(MODELS) | |
demo.title = "DeepSeek-VL Chatbot" | |
reload_javascript() | |
demo.queue(max_size=20).launch( | |
share=False, | |
favicon_path="assets/favicon.ico", | |
) | |