fffiloni commited on
Commit
3650c12
·
verified ·
1 Parent(s): 9b15738

Migrated from GitHub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. LICENSE +201 -0
  3. ORIGINAL_README.md +158 -0
  4. assets/demo1_audio.wav +0 -0
  5. assets/demo1_video.mp4 +3 -0
  6. assets/demo2_audio.wav +0 -0
  7. assets/demo2_video.mp4 +3 -0
  8. assets/demo3_audio.wav +0 -0
  9. assets/demo3_video.mp4 +3 -0
  10. assets/framework.png +0 -0
  11. configs/audio.yaml +23 -0
  12. configs/scheduler_config.json +13 -0
  13. configs/syncnet/syncnet_16_latent.yaml +46 -0
  14. configs/syncnet/syncnet_16_pixel.yaml +45 -0
  15. configs/syncnet/syncnet_25_pixel.yaml +45 -0
  16. configs/unet/first_stage.yaml +103 -0
  17. configs/unet/second_stage.yaml +103 -0
  18. data_processing_pipeline.sh +9 -0
  19. eval/detectors/README.md +3 -0
  20. eval/detectors/__init__.py +1 -0
  21. eval/detectors/s3fd/__init__.py +61 -0
  22. eval/detectors/s3fd/box_utils.py +221 -0
  23. eval/detectors/s3fd/nets.py +174 -0
  24. eval/draw_syncnet_lines.py +70 -0
  25. eval/eval_fvd.py +96 -0
  26. eval/eval_sync_conf.py +77 -0
  27. eval/eval_sync_conf.sh +2 -0
  28. eval/eval_syncnet_acc.py +118 -0
  29. eval/eval_syncnet_acc.sh +3 -0
  30. eval/fvd.py +56 -0
  31. eval/hyper_iqa.py +343 -0
  32. eval/inference_videos.py +37 -0
  33. eval/syncnet/__init__.py +1 -0
  34. eval/syncnet/syncnet.py +113 -0
  35. eval/syncnet/syncnet_eval.py +220 -0
  36. eval/syncnet_detect.py +251 -0
  37. inference.sh +9 -0
  38. latentsync/data/syncnet_dataset.py +153 -0
  39. latentsync/data/unet_dataset.py +164 -0
  40. latentsync/models/attention.py +492 -0
  41. latentsync/models/motion_module.py +332 -0
  42. latentsync/models/resnet.py +234 -0
  43. latentsync/models/syncnet.py +233 -0
  44. latentsync/models/syncnet_wav2lip.py +90 -0
  45. latentsync/models/unet.py +528 -0
  46. latentsync/models/unet_blocks.py +903 -0
  47. latentsync/models/utils.py +19 -0
  48. latentsync/pipelines/lipsync_pipeline.py +470 -0
  49. latentsync/trepa/__init__.py +64 -0
  50. latentsync/trepa/third_party/VideoMAEv2/__init__.py +0 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/demo1_video.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ assets/demo2_video.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ assets/demo3_video.mp4 filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
ORIGINAL_README.md ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # LatentSync: Audio Conditioned Latent Diffusion Models for Lip Sync
2
+
3
+ <div align="center">
4
+
5
+ [![arXiv](https://img.shields.io/badge/arXiv_paper-2412.09262-b31b1b)](https://arxiv.org/abs/2412.09262)
6
+
7
+ </div>
8
+
9
+ ## 📖 Abstract
10
+
11
+ We present *LatentSync*, an end-to-end lip sync framework based on audio conditioned latent diffusion models without any intermediate motion representation, diverging from previous diffusion-based lip sync methods based on pixel space diffusion or two-stage generation. Our framework can leverage the powerful capabilities of Stable Diffusion to directly model complex audio-visual correlations. Additionally, we found that the diffusion-based lip sync methods exhibit inferior temporal consistency due to the inconsistency in the diffusion process across different frames. We propose *Temporal REPresentation Alignment (TREPA)* to enhance temporal consistency while preserving lip-sync accuracy. TREPA uses temporal representations extracted by large-scale self-supervised video models to align the generated frames with the ground truth frames.
12
+
13
+ ## 🏗️ Framework
14
+
15
+ <p align="center">
16
+ <img src="assets/framework.png" width=100%>
17
+ <p>
18
+
19
+ LatentSync uses the Whisper to convert melspectrogram into audio embeddings, which are then integrated into the U-Net via cross-attention layers. The reference and masked frames are channel-wise concatenated with noised latents as the input of U-Net. In the training process, we use one-step method to get estimated clean latents from predicted noises, which are then decoded to obtain the estimated clean frames. The TREPA, LPIPS and SyncNet loss are added in the pixel space.
20
+
21
+ ## 🎬 Demo
22
+
23
+ <table class="center">
24
+ <tr style="font-weight: bolder;text-align:center;">
25
+ <td width="50%"><b>Original video</b></td>
26
+ <td width="50%"><b>Lip-synced video</b></td>
27
+ </tr>
28
+ <tr>
29
+ <td>
30
+ <video src=https://github.com/user-attachments/assets/ff3a84da-dc9b-498a-950f-5c54f58dd5c5 controls preload></video>
31
+ </td>
32
+ <td>
33
+ <video src=https://github.com/user-attachments/assets/150e00fd-381e-4421-a478-a9ea3d1212a8 controls preload></video>
34
+ </td>
35
+ </tr>
36
+ <tr>
37
+ <td>
38
+ <video src=https://github.com/user-attachments/assets/32c830a9-4d7d-4044-9b33-b184d8e11010 controls preload></video>
39
+ </td>
40
+ <td>
41
+ <video src=https://github.com/user-attachments/assets/84e4fe9d-b108-44a4-8712-13a012348145 controls preload></video>
42
+ </td>
43
+ </tr>
44
+ <tr>
45
+ <td>
46
+ <video src=https://github.com/user-attachments/assets/7510a448-255a-44ee-b093-a1b98bd3961d controls preload></video>
47
+ </td>
48
+ <td>
49
+ <video src=https://github.com/user-attachments/assets/6150c453-c559-4ae0-bb00-c565f135ff41 controls preload></video>
50
+ </td>
51
+ </tr>
52
+ <tr>
53
+ <td width=300px>
54
+ <video src=https://github.com/user-attachments/assets/0f7f9845-68b2-4165-bd08-c7bbe01a0e52 controls preload></video>
55
+ </td>
56
+ <td width=300px>
57
+ <video src=https://github.com/user-attachments/assets/c34fe89d-0c09-4de3-8601-3d01229a69e3 controls preload></video>
58
+ </td>
59
+ </tr>
60
+ <tr>
61
+ <td>
62
+ <video src=https://github.com/user-attachments/assets/7ce04d50-d39f-4154-932a-ec3a590a8f64 controls preload></video>
63
+ </td>
64
+ <td>
65
+ <video src=https://github.com/user-attachments/assets/70bde520-42fa-4a0e-b66c-d3040ae5e065 controls preload></video>
66
+ </td>
67
+ </tr>
68
+ </table>
69
+
70
+ (Photorealistic videos are filmed by contracted models, and anime videos are from [VASA-1](https://www.microsoft.com/en-us/research/project/vasa-1/) and [EMO](https://humanaigc.github.io/emote-portrait-alive/))
71
+
72
+ ## 📑 Open-source Plan
73
+
74
+ - [x] Inference code and checkpoints
75
+ - [x] Data processing pipeline
76
+ - [x] Training code
77
+
78
+ ## 🔧 Setting up the Environment
79
+
80
+ Install the required packages and download the checkpoints via:
81
+
82
+ ```bash
83
+ source setup_env.sh
84
+ ```
85
+
86
+ If the download is successful, the checkpoints should appear as follows:
87
+
88
+ ```
89
+ ./checkpoints/
90
+ |-- latentsync_unet.pt
91
+ |-- latentsync_syncnet.pt
92
+ |-- whisper
93
+ | `-- tiny.pt
94
+ |-- auxiliary
95
+ | |-- 2DFAN4-cd938726ad.zip
96
+ | |-- i3d_torchscript.pt
97
+ | |-- koniq_pretrained.pkl
98
+ | |-- s3fd-619a316812.pth
99
+ | |-- sfd_face.pth
100
+ | |-- syncnet_v2.model
101
+ | |-- vgg16-397923af.pth
102
+ | `-- vit_g_hybrid_pt_1200e_ssv2_ft.pth
103
+ ```
104
+
105
+ These already include all the checkpoints required for latentsync training and inference. If you just want to try inference, you only need to download `latentsync_unet.pt` and `tiny.pt` from our [HuggingFace repo](https://huggingface.co/chunyu-li/LatentSync)
106
+
107
+ ## 🚀 Inference
108
+
109
+ Run the script for inference, which requires about 6.5 GB GPU memory.
110
+
111
+ ```bash
112
+ ./inference.sh
113
+ ```
114
+
115
+ You can change the parameter `guidance_scale` to 1.5 to improve the lip-sync accuracy.
116
+
117
+ ## 🔄 Data Processing Pipeline
118
+
119
+ The complete data processing pipeline includes the following steps:
120
+
121
+ 1. Remove the broken video files.
122
+ 2. Resample the video FPS to 25, and resample the audio to 16000 Hz.
123
+ 3. Scene detect via [PySceneDetect](https://github.com/Breakthrough/PySceneDetect).
124
+ 4. Split each video into 5-10 second segments.
125
+ 5. Remove videos where the face is smaller than 256 $\times$ 256, as well as videos with more than one face.
126
+ 6. Affine transform the faces according to the landmarks detected by [face-alignment](https://github.com/1adrianb/face-alignment), then resize to 256 $\times$ 256.
127
+ 7. Remove videos with [sync confidence score](https://www.robots.ox.ac.uk/~vgg/publications/2016/Chung16a/chung16a.pdf) lower than 3, and adjust the audio-visual offset to 0.
128
+ 8. Calculate [hyperIQA](https://openaccess.thecvf.com/content_CVPR_2020/papers/Su_Blindly_Assess_Image_Quality_in_the_Wild_Guided_by_a_CVPR_2020_paper.pdf) score, and remove videos with scores lower than 40.
129
+
130
+ Run the script to execute the data processing pipeline:
131
+
132
+ ```bash
133
+ ./data_processing_pipeline.sh
134
+ ```
135
+
136
+ You can change the parameter `input_dir` in the script to specify the data directory to be processed. The processed data will be saved in the same directory. Each step will generate a new directory to prevent the need to redo the entire pipeline in case the process is interrupted by an unexpected error.
137
+
138
+ ## 🏋️‍♂️ Training U-Net
139
+
140
+ Before training, you must process the data as described above and download all the checkpoints. We released a pretrained SyncNet with 94% accuracy on the VoxCeleb2 dataset for the supervision of U-Net training. Note that this SyncNet is trained on affine transformed videos, so when using or evaluating this SyncNet, you need to perform affine transformation on the video first (the code of affine transformation is included in the data processing pipeline).
141
+
142
+ If all the preparations are complete, you can train the U-Net with the following script:
143
+
144
+ ```bash
145
+ ./train_unet.sh
146
+ ```
147
+
148
+ You should change the parameters in U-Net config file to specify the data directory, checkpoint save path, and other training hyperparameters.
149
+
150
+ ## 🏋️‍♂️ Training SyncNet
151
+
152
+ In case you want to train SyncNet on your own datasets, you can run the following script. The data processing pipeline for SyncNet is the same as U-Net.
153
+
154
+ ```bash
155
+ ./train_syncnet.sh
156
+ ```
157
+
158
+ After `validations_steps` training, the loss charts will be saved in `train_output_dir`. They contain both the training and validation loss.
assets/demo1_audio.wav ADDED
Binary file (307 kB). View file
 
assets/demo1_video.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed2dd1e2001aa605c3f2d77672a8af4ed55e427a85c55d408adfc3d5076bc872
3
+ size 1240008
assets/demo2_audio.wav ADDED
Binary file (635 kB). View file
 
assets/demo2_video.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c3f10288e0642e587a95c0040e6966f8f6b7e003c3a17b572f72472b896d8ff
3
+ size 1772492
assets/demo3_audio.wav ADDED
Binary file (594 kB). View file
 
assets/demo3_video.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfa177b2a44f7809f606285c120e270d526caa50d708ec95e0f614d220970e0f
3
+ size 2112370
assets/framework.png ADDED
configs/audio.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ num_mels: 80 # Number of mel-spectrogram channels and local conditioning dimensionality
3
+ rescale: true # Whether to rescale audio prior to preprocessing
4
+ rescaling_max: 0.9 # Rescaling value
5
+ use_lws:
6
+ false # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
7
+ # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
8
+ # Does not work if n_ffit is not multiple of hop_size!!
9
+ n_fft: 800 # Extra window size is filled with 0 paddings to match this parameter
10
+ hop_size: 200 # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
11
+ win_size: 800 # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
12
+ sample_rate: 16000 # 16000Hz (corresponding to librispeech) (sox --i <filename>)
13
+ frame_shift_ms: null
14
+ signal_normalization: true
15
+ allow_clipping_in_normalization: true
16
+ symmetric_mels: true
17
+ max_abs_value: 4.0
18
+ preemphasize: true # whether to apply filter
19
+ preemphasis: 0.97 # filter coefficient.
20
+ min_level_db: -100
21
+ ref_level_db: 20
22
+ fmin: 55
23
+ fmax: 7600
configs/scheduler_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDIMScheduler",
3
+ "_diffusers_version": "0.6.0.dev0",
4
+ "beta_end": 0.012,
5
+ "beta_schedule": "scaled_linear",
6
+ "beta_start": 0.00085,
7
+ "clip_sample": false,
8
+ "num_train_timesteps": 1000,
9
+ "set_alpha_to_one": false,
10
+ "steps_offset": 1,
11
+ "trained_betas": null,
12
+ "skip_prk_steps": true
13
+ }
configs/syncnet/syncnet_16_latent.yaml ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 52)
3
+ in_channels: 1
4
+ block_out_channels: [32, 64, 128, 256, 512, 1024]
5
+ downsample_factors: [[2, 1], 2, 2, 2, 2, [2, 3]]
6
+ attn_blocks: [0, 0, 0, 0, 0, 0]
7
+ dropout: 0.0
8
+ visual_encoder: # input (64, 32, 32)
9
+ in_channels: 64
10
+ block_out_channels: [64, 128, 256, 256, 512, 1024]
11
+ downsample_factors: [2, 2, 2, 1, 2, 2]
12
+ attn_blocks: [0, 0, 0, 0, 0, 0]
13
+ dropout: 0.0
14
+
15
+ ckpt:
16
+ resume_ckpt_path: ""
17
+ inference_ckpt_path: ""
18
+ save_ckpt_steps: 2500
19
+
20
+ data:
21
+ train_output_dir: output/syncnet
22
+ num_val_samples: 1200
23
+ batch_size: 120 # 40
24
+ num_workers: 11 # 11
25
+ latent_space: true
26
+ num_frames: 16
27
+ resolution: 256
28
+ train_fileslist: ""
29
+ train_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/train
30
+ val_fileslist: ""
31
+ val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
32
+ audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
33
+ lower_half: false
34
+ pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
35
+ audio_sample_rate: 16000
36
+ video_fps: 25
37
+
38
+ optimizer:
39
+ lr: 1e-5
40
+ max_grad_norm: 1.0
41
+
42
+ run:
43
+ max_train_steps: 10000000
44
+ validation_steps: 2500
45
+ mixed_precision_training: true
46
+ seed: 42
configs/syncnet/syncnet_16_pixel.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 52)
3
+ in_channels: 1
4
+ block_out_channels: [32, 64, 128, 256, 512, 1024, 2048]
5
+ downsample_factors: [[2, 1], 2, 2, 1, 2, 2, [2, 3]]
6
+ attn_blocks: [0, 0, 0, 0, 0, 0, 0]
7
+ dropout: 0.0
8
+ visual_encoder: # input (48, 128, 256)
9
+ in_channels: 48
10
+ block_out_channels: [64, 128, 256, 256, 512, 1024, 2048, 2048]
11
+ downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
12
+ attn_blocks: [0, 0, 0, 0, 0, 0, 0, 0]
13
+ dropout: 0.0
14
+
15
+ ckpt:
16
+ resume_ckpt_path: ""
17
+ inference_ckpt_path: checkpoints/latentsync_syncnet.pt
18
+ save_ckpt_steps: 2500
19
+
20
+ data:
21
+ train_output_dir: debug/syncnet
22
+ num_val_samples: 2048
23
+ batch_size: 128 # 128
24
+ num_workers: 11 # 11
25
+ latent_space: false
26
+ num_frames: 16
27
+ resolution: 256
28
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
29
+ train_data_dir: ""
30
+ val_fileslist: ""
31
+ val_data_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/high_visual_quality/val
32
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
33
+ lower_half: true
34
+ audio_sample_rate: 16000
35
+ video_fps: 25
36
+
37
+ optimizer:
38
+ lr: 1e-5
39
+ max_grad_norm: 1.0
40
+
41
+ run:
42
+ max_train_steps: 10000000
43
+ validation_steps: 2500
44
+ mixed_precision_training: true
45
+ seed: 42
configs/syncnet/syncnet_25_pixel.yaml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ audio_encoder: # input (1, 80, 80)
3
+ in_channels: 1
4
+ block_out_channels: [64, 128, 256, 256, 512, 1024]
5
+ downsample_factors: [2, 2, 2, 2, 2, 2]
6
+ dropout: 0.0
7
+ visual_encoder: # input (75, 128, 256)
8
+ in_channels: 75
9
+ block_out_channels: [128, 128, 256, 256, 512, 512, 1024, 1024]
10
+ downsample_factors: [[1, 2], 2, 2, 2, 2, 2, 2, 2]
11
+ dropout: 0.0
12
+
13
+ ckpt:
14
+ resume_ckpt_path: ""
15
+ inference_ckpt_path: ""
16
+ save_ckpt_steps: 2500
17
+
18
+ data:
19
+ train_output_dir: debug/syncnet
20
+ num_val_samples: 2048
21
+ batch_size: 64 # 64
22
+ num_workers: 11 # 11
23
+ latent_space: false
24
+ num_frames: 25
25
+ resolution: 256
26
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_vox_avatars_ads_affine.txt
27
+ # /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/hdtf_voxceleb_avatars_affine.txt
28
+ train_data_dir: ""
29
+ val_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/vox_affine_val.txt
30
+ # /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/voxceleb_val.txt
31
+ val_data_dir: ""
32
+ audio_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel
33
+ lower_half: true
34
+ pretrained_audio_model_path: facebook/wav2vec2-large-xlsr-53
35
+ audio_sample_rate: 16000
36
+ video_fps: 25
37
+
38
+ optimizer:
39
+ lr: 1e-5
40
+ max_grad_norm: 1.0
41
+
42
+ run:
43
+ max_train_steps: 10000000
44
+ mixed_precision_training: true
45
+ seed: 42
configs/unet/first_stage.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
3
+ train_output_dir: debug/unet
4
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
5
+ train_data_dir: ""
6
+ audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
7
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
8
+
9
+ val_video_path: assets/demo1_video.mp4
10
+ val_audio_path: assets/demo1_audio.wav
11
+ batch_size: 8 # 8
12
+ num_workers: 11 # 11
13
+ num_frames: 16
14
+ resolution: 256
15
+ mask: fix_mask
16
+ audio_sample_rate: 16000
17
+ video_fps: 25
18
+
19
+ ckpt:
20
+ resume_ckpt_path: checkpoints/latentsync_unet.pt
21
+ save_ckpt_steps: 5000
22
+
23
+ run:
24
+ pixel_space_supervise: false
25
+ use_syncnet: false
26
+ sync_loss_weight: 0.05 # 1/283
27
+ perceptual_loss_weight: 0.1 # 0.1
28
+ recon_loss_weight: 1 # 1
29
+ guidance_scale: 1.0 # 1.5 or 1.0
30
+ trepa_loss_weight: 10
31
+ inference_steps: 20
32
+ seed: 1247
33
+ use_mixed_noise: true
34
+ mixed_noise_alpha: 1 # 1
35
+ mixed_precision_training: true
36
+ enable_gradient_checkpointing: false
37
+ enable_xformers_memory_efficient_attention: true
38
+ max_train_steps: 10000000
39
+ max_train_epochs: -1
40
+
41
+ optimizer:
42
+ lr: 1e-5
43
+ scale_lr: false
44
+ max_grad_norm: 1.0
45
+ lr_scheduler: constant
46
+ lr_warmup_steps: 0
47
+
48
+ model:
49
+ act_fn: silu
50
+ add_audio_layer: true
51
+ custom_audio_layer: false
52
+ audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
53
+ attention_head_dim: 8
54
+ block_out_channels: [320, 640, 1280, 1280]
55
+ center_input_sample: false
56
+ cross_attention_dim: 384
57
+ down_block_types:
58
+ [
59
+ "CrossAttnDownBlock3D",
60
+ "CrossAttnDownBlock3D",
61
+ "CrossAttnDownBlock3D",
62
+ "DownBlock3D",
63
+ ]
64
+ mid_block_type: UNetMidBlock3DCrossAttn
65
+ up_block_types:
66
+ [
67
+ "UpBlock3D",
68
+ "CrossAttnUpBlock3D",
69
+ "CrossAttnUpBlock3D",
70
+ "CrossAttnUpBlock3D",
71
+ ]
72
+ downsample_padding: 1
73
+ flip_sin_to_cos: true
74
+ freq_shift: 0
75
+ in_channels: 13 # 49
76
+ layers_per_block: 2
77
+ mid_block_scale_factor: 1
78
+ norm_eps: 1e-5
79
+ norm_num_groups: 32
80
+ out_channels: 4 # 16
81
+ sample_size: 64
82
+ resnet_time_scale_shift: default # Choose between [default, scale_shift]
83
+ unet_use_cross_frame_attention: false
84
+ unet_use_temporal_attention: false
85
+
86
+ # Actually we don't use the motion module in the final version of LatentSync
87
+ # When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
88
+ # We decied to leave the code here for possible future usage
89
+ use_motion_module: false
90
+ motion_module_resolutions: [1, 2, 4, 8]
91
+ motion_module_mid_block: false
92
+ motion_module_decoder_only: false
93
+ motion_module_type: Vanilla
94
+ motion_module_kwargs:
95
+ num_attention_heads: 8
96
+ num_transformer_block: 1
97
+ attention_block_types:
98
+ - Temporal_Self
99
+ - Temporal_Self
100
+ temporal_position_encoding: true
101
+ temporal_position_encoding_max_len: 16
102
+ temporal_attention_dim_div: 1
103
+ zero_initialize: true
configs/unet/second_stage.yaml ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ syncnet_config_path: configs/syncnet/syncnet_16_pixel.yaml
3
+ train_output_dir: debug/unet
4
+ train_fileslist: /mnt/bn/maliva-gen-ai-v2/chunyu.li/fileslist/all_data_v6.txt
5
+ train_data_dir: ""
6
+ audio_embeds_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/whisper_new
7
+ audio_mel_cache_dir: /mnt/bn/maliva-gen-ai-v2/chunyu.li/audio_cache/mel_new
8
+
9
+ val_video_path: assets/demo1_video.mp4
10
+ val_audio_path: assets/demo1_audio.wav
11
+ batch_size: 2 # 8
12
+ num_workers: 11 # 11
13
+ num_frames: 16
14
+ resolution: 256
15
+ mask: fix_mask
16
+ audio_sample_rate: 16000
17
+ video_fps: 25
18
+
19
+ ckpt:
20
+ resume_ckpt_path: checkpoints/latentsync_unet.pt
21
+ save_ckpt_steps: 5000
22
+
23
+ run:
24
+ pixel_space_supervise: true
25
+ use_syncnet: true
26
+ sync_loss_weight: 0.05 # 1/283
27
+ perceptual_loss_weight: 0.1 # 0.1
28
+ recon_loss_weight: 1 # 1
29
+ guidance_scale: 1.0 # 1.5 or 1.0
30
+ trepa_loss_weight: 10
31
+ inference_steps: 20
32
+ seed: 1247
33
+ use_mixed_noise: true
34
+ mixed_noise_alpha: 1 # 1
35
+ mixed_precision_training: true
36
+ enable_gradient_checkpointing: false
37
+ enable_xformers_memory_efficient_attention: true
38
+ max_train_steps: 10000000
39
+ max_train_epochs: -1
40
+
41
+ optimizer:
42
+ lr: 1e-5
43
+ scale_lr: false
44
+ max_grad_norm: 1.0
45
+ lr_scheduler: constant
46
+ lr_warmup_steps: 0
47
+
48
+ model:
49
+ act_fn: silu
50
+ add_audio_layer: true
51
+ custom_audio_layer: false
52
+ audio_condition_method: cross_attn # Choose between [cross_attn, group_norm]
53
+ attention_head_dim: 8
54
+ block_out_channels: [320, 640, 1280, 1280]
55
+ center_input_sample: false
56
+ cross_attention_dim: 384
57
+ down_block_types:
58
+ [
59
+ "CrossAttnDownBlock3D",
60
+ "CrossAttnDownBlock3D",
61
+ "CrossAttnDownBlock3D",
62
+ "DownBlock3D",
63
+ ]
64
+ mid_block_type: UNetMidBlock3DCrossAttn
65
+ up_block_types:
66
+ [
67
+ "UpBlock3D",
68
+ "CrossAttnUpBlock3D",
69
+ "CrossAttnUpBlock3D",
70
+ "CrossAttnUpBlock3D",
71
+ ]
72
+ downsample_padding: 1
73
+ flip_sin_to_cos: true
74
+ freq_shift: 0
75
+ in_channels: 13 # 49
76
+ layers_per_block: 2
77
+ mid_block_scale_factor: 1
78
+ norm_eps: 1e-5
79
+ norm_num_groups: 32
80
+ out_channels: 4 # 16
81
+ sample_size: 64
82
+ resnet_time_scale_shift: default # Choose between [default, scale_shift]
83
+ unet_use_cross_frame_attention: false
84
+ unet_use_temporal_attention: false
85
+
86
+ # Actually we don't use the motion module in the final version of LatentSync
87
+ # When we started the project, we used the codebase of AnimateDiff and tried motion module, the results are poor
88
+ # We decied to leave the code here for possible future usage
89
+ use_motion_module: false
90
+ motion_module_resolutions: [1, 2, 4, 8]
91
+ motion_module_mid_block: false
92
+ motion_module_decoder_only: false
93
+ motion_module_type: Vanilla
94
+ motion_module_kwargs:
95
+ num_attention_heads: 8
96
+ num_transformer_block: 1
97
+ attention_block_types:
98
+ - Temporal_Self
99
+ - Temporal_Self
100
+ temporal_position_encoding: true
101
+ temporal_position_encoding_max_len: 16
102
+ temporal_attention_dim_div: 1
103
+ zero_initialize: true
data_processing_pipeline.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m preprocess.data_processing_pipeline \
4
+ --total_num_workers 20 \
5
+ --per_gpu_num_workers 20 \
6
+ --resolution 256 \
7
+ --sync_conf_threshold 3 \
8
+ --temp_dir temp \
9
+ --input_dir /mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/raw
eval/detectors/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Face detector
2
+
3
+ This face detector is adapted from `https://github.com/cs-giung/face-detection-pytorch`.
eval/detectors/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .s3fd import S3FD
eval/detectors/s3fd/__init__.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import numpy as np
3
+ import cv2
4
+ import torch
5
+ from torchvision import transforms
6
+ from .nets import S3FDNet
7
+ from .box_utils import nms_
8
+
9
+ PATH_WEIGHT = 'checkpoints/auxiliary/sfd_face.pth'
10
+ img_mean = np.array([104., 117., 123.])[:, np.newaxis, np.newaxis].astype('float32')
11
+
12
+
13
+ class S3FD():
14
+
15
+ def __init__(self, device='cuda'):
16
+
17
+ tstamp = time.time()
18
+ self.device = device
19
+
20
+ print('[S3FD] loading with', self.device)
21
+ self.net = S3FDNet(device=self.device).to(self.device)
22
+ state_dict = torch.load(PATH_WEIGHT, map_location=self.device)
23
+ self.net.load_state_dict(state_dict)
24
+ self.net.eval()
25
+ print('[S3FD] finished loading (%.4f sec)' % (time.time() - tstamp))
26
+
27
+ def detect_faces(self, image, conf_th=0.8, scales=[1]):
28
+
29
+ w, h = image.shape[1], image.shape[0]
30
+
31
+ bboxes = np.empty(shape=(0, 5))
32
+
33
+ with torch.no_grad():
34
+ for s in scales:
35
+ scaled_img = cv2.resize(image, dsize=(0, 0), fx=s, fy=s, interpolation=cv2.INTER_LINEAR)
36
+
37
+ scaled_img = np.swapaxes(scaled_img, 1, 2)
38
+ scaled_img = np.swapaxes(scaled_img, 1, 0)
39
+ scaled_img = scaled_img[[2, 1, 0], :, :]
40
+ scaled_img = scaled_img.astype('float32')
41
+ scaled_img -= img_mean
42
+ scaled_img = scaled_img[[2, 1, 0], :, :]
43
+ x = torch.from_numpy(scaled_img).unsqueeze(0).to(self.device)
44
+ y = self.net(x)
45
+
46
+ detections = y.data
47
+ scale = torch.Tensor([w, h, w, h])
48
+
49
+ for i in range(detections.size(1)):
50
+ j = 0
51
+ while detections[0, i, j, 0] > conf_th:
52
+ score = detections[0, i, j, 0]
53
+ pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
54
+ bbox = (pt[0], pt[1], pt[2], pt[3], score)
55
+ bboxes = np.vstack((bboxes, bbox))
56
+ j += 1
57
+
58
+ keep = nms_(bboxes, 0.1)
59
+ bboxes = bboxes[keep]
60
+
61
+ return bboxes
eval/detectors/s3fd/box_utils.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from itertools import product as product
3
+ import torch
4
+ from torch.autograd import Function
5
+ import warnings
6
+
7
+
8
+ def nms_(dets, thresh):
9
+ """
10
+ Courtesy of Ross Girshick
11
+ [https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/nms/py_cpu_nms.py]
12
+ """
13
+ x1 = dets[:, 0]
14
+ y1 = dets[:, 1]
15
+ x2 = dets[:, 2]
16
+ y2 = dets[:, 3]
17
+ scores = dets[:, 4]
18
+
19
+ areas = (x2 - x1) * (y2 - y1)
20
+ order = scores.argsort()[::-1]
21
+
22
+ keep = []
23
+ while order.size > 0:
24
+ i = order[0]
25
+ keep.append(int(i))
26
+ xx1 = np.maximum(x1[i], x1[order[1:]])
27
+ yy1 = np.maximum(y1[i], y1[order[1:]])
28
+ xx2 = np.minimum(x2[i], x2[order[1:]])
29
+ yy2 = np.minimum(y2[i], y2[order[1:]])
30
+
31
+ w = np.maximum(0.0, xx2 - xx1)
32
+ h = np.maximum(0.0, yy2 - yy1)
33
+ inter = w * h
34
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
35
+
36
+ inds = np.where(ovr <= thresh)[0]
37
+ order = order[inds + 1]
38
+
39
+ return np.array(keep).astype(np.int32)
40
+
41
+
42
+ def decode(loc, priors, variances):
43
+ """Decode locations from predictions using priors to undo
44
+ the encoding we did for offset regression at train time.
45
+ Args:
46
+ loc (tensor): location predictions for loc layers,
47
+ Shape: [num_priors,4]
48
+ priors (tensor): Prior boxes in center-offset form.
49
+ Shape: [num_priors,4].
50
+ variances: (list[float]) Variances of priorboxes
51
+ Return:
52
+ decoded bounding box predictions
53
+ """
54
+
55
+ boxes = torch.cat((
56
+ priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
57
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
58
+ boxes[:, :2] -= boxes[:, 2:] / 2
59
+ boxes[:, 2:] += boxes[:, :2]
60
+ return boxes
61
+
62
+
63
+ def nms(boxes, scores, overlap=0.5, top_k=200):
64
+ """Apply non-maximum suppression at test time to avoid detecting too many
65
+ overlapping bounding boxes for a given object.
66
+ Args:
67
+ boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
68
+ scores: (tensor) The class predscores for the img, Shape:[num_priors].
69
+ overlap: (float) The overlap thresh for suppressing unnecessary boxes.
70
+ top_k: (int) The Maximum number of box preds to consider.
71
+ Return:
72
+ The indices of the kept boxes with respect to num_priors.
73
+ """
74
+
75
+ keep = scores.new(scores.size(0)).zero_().long()
76
+ if boxes.numel() == 0:
77
+ return keep, 0
78
+ x1 = boxes[:, 0]
79
+ y1 = boxes[:, 1]
80
+ x2 = boxes[:, 2]
81
+ y2 = boxes[:, 3]
82
+ area = torch.mul(x2 - x1, y2 - y1)
83
+ v, idx = scores.sort(0) # sort in ascending order
84
+ # I = I[v >= 0.01]
85
+ idx = idx[-top_k:] # indices of the top-k largest vals
86
+ xx1 = boxes.new()
87
+ yy1 = boxes.new()
88
+ xx2 = boxes.new()
89
+ yy2 = boxes.new()
90
+ w = boxes.new()
91
+ h = boxes.new()
92
+
93
+ # keep = torch.Tensor()
94
+ count = 0
95
+ while idx.numel() > 0:
96
+ i = idx[-1] # index of current largest val
97
+ # keep.append(i)
98
+ keep[count] = i
99
+ count += 1
100
+ if idx.size(0) == 1:
101
+ break
102
+ idx = idx[:-1] # remove kept element from view
103
+ # load bboxes of next highest vals
104
+ with warnings.catch_warnings():
105
+ # Ignore UserWarning within this block
106
+ warnings.simplefilter("ignore", category=UserWarning)
107
+ torch.index_select(x1, 0, idx, out=xx1)
108
+ torch.index_select(y1, 0, idx, out=yy1)
109
+ torch.index_select(x2, 0, idx, out=xx2)
110
+ torch.index_select(y2, 0, idx, out=yy2)
111
+ # store element-wise max with next highest score
112
+ xx1 = torch.clamp(xx1, min=x1[i])
113
+ yy1 = torch.clamp(yy1, min=y1[i])
114
+ xx2 = torch.clamp(xx2, max=x2[i])
115
+ yy2 = torch.clamp(yy2, max=y2[i])
116
+ w.resize_as_(xx2)
117
+ h.resize_as_(yy2)
118
+ w = xx2 - xx1
119
+ h = yy2 - yy1
120
+ # check sizes of xx1 and xx2.. after each iteration
121
+ w = torch.clamp(w, min=0.0)
122
+ h = torch.clamp(h, min=0.0)
123
+ inter = w * h
124
+ # IoU = i / (area(a) + area(b) - i)
125
+ rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
126
+ union = (rem_areas - inter) + area[i]
127
+ IoU = inter / union # store result in iou
128
+ # keep only elements with an IoU <= overlap
129
+ idx = idx[IoU.le(overlap)]
130
+ return keep, count
131
+
132
+
133
+ class Detect(object):
134
+
135
+ def __init__(self, num_classes=2,
136
+ top_k=750, nms_thresh=0.3, conf_thresh=0.05,
137
+ variance=[0.1, 0.2], nms_top_k=5000):
138
+
139
+ self.num_classes = num_classes
140
+ self.top_k = top_k
141
+ self.nms_thresh = nms_thresh
142
+ self.conf_thresh = conf_thresh
143
+ self.variance = variance
144
+ self.nms_top_k = nms_top_k
145
+
146
+ def forward(self, loc_data, conf_data, prior_data):
147
+
148
+ num = loc_data.size(0)
149
+ num_priors = prior_data.size(0)
150
+
151
+ conf_preds = conf_data.view(num, num_priors, self.num_classes).transpose(2, 1)
152
+ batch_priors = prior_data.view(-1, num_priors, 4).expand(num, num_priors, 4)
153
+ batch_priors = batch_priors.contiguous().view(-1, 4)
154
+
155
+ decoded_boxes = decode(loc_data.view(-1, 4), batch_priors, self.variance)
156
+ decoded_boxes = decoded_boxes.view(num, num_priors, 4)
157
+
158
+ output = torch.zeros(num, self.num_classes, self.top_k, 5)
159
+
160
+ for i in range(num):
161
+ boxes = decoded_boxes[i].clone()
162
+ conf_scores = conf_preds[i].clone()
163
+
164
+ for cl in range(1, self.num_classes):
165
+ c_mask = conf_scores[cl].gt(self.conf_thresh)
166
+ scores = conf_scores[cl][c_mask]
167
+
168
+ if scores.dim() == 0:
169
+ continue
170
+ l_mask = c_mask.unsqueeze(1).expand_as(boxes)
171
+ boxes_ = boxes[l_mask].view(-1, 4)
172
+ ids, count = nms(boxes_, scores, self.nms_thresh, self.nms_top_k)
173
+ count = count if count < self.top_k else self.top_k
174
+
175
+ output[i, cl, :count] = torch.cat((scores[ids[:count]].unsqueeze(1), boxes_[ids[:count]]), 1)
176
+
177
+ return output
178
+
179
+
180
+ class PriorBox(object):
181
+
182
+ def __init__(self, input_size, feature_maps,
183
+ variance=[0.1, 0.2],
184
+ min_sizes=[16, 32, 64, 128, 256, 512],
185
+ steps=[4, 8, 16, 32, 64, 128],
186
+ clip=False):
187
+
188
+ super(PriorBox, self).__init__()
189
+
190
+ self.imh = input_size[0]
191
+ self.imw = input_size[1]
192
+ self.feature_maps = feature_maps
193
+
194
+ self.variance = variance
195
+ self.min_sizes = min_sizes
196
+ self.steps = steps
197
+ self.clip = clip
198
+
199
+ def forward(self):
200
+ mean = []
201
+ for k, fmap in enumerate(self.feature_maps):
202
+ feath = fmap[0]
203
+ featw = fmap[1]
204
+ for i, j in product(range(feath), range(featw)):
205
+ f_kw = self.imw / self.steps[k]
206
+ f_kh = self.imh / self.steps[k]
207
+
208
+ cx = (j + 0.5) / f_kw
209
+ cy = (i + 0.5) / f_kh
210
+
211
+ s_kw = self.min_sizes[k] / self.imw
212
+ s_kh = self.min_sizes[k] / self.imh
213
+
214
+ mean += [cx, cy, s_kw, s_kh]
215
+
216
+ output = torch.FloatTensor(mean).view(-1, 4)
217
+
218
+ if self.clip:
219
+ output.clamp_(max=1, min=0)
220
+
221
+ return output
eval/detectors/s3fd/nets.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torch.nn.init as init
5
+ from .box_utils import Detect, PriorBox
6
+
7
+
8
+ class L2Norm(nn.Module):
9
+
10
+ def __init__(self, n_channels, scale):
11
+ super(L2Norm, self).__init__()
12
+ self.n_channels = n_channels
13
+ self.gamma = scale or None
14
+ self.eps = 1e-10
15
+ self.weight = nn.Parameter(torch.Tensor(self.n_channels))
16
+ self.reset_parameters()
17
+
18
+ def reset_parameters(self):
19
+ init.constant_(self.weight, self.gamma)
20
+
21
+ def forward(self, x):
22
+ norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
23
+ x = torch.div(x, norm)
24
+ out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
25
+ return out
26
+
27
+
28
+ class S3FDNet(nn.Module):
29
+
30
+ def __init__(self, device='cuda'):
31
+ super(S3FDNet, self).__init__()
32
+ self.device = device
33
+
34
+ self.vgg = nn.ModuleList([
35
+ nn.Conv2d(3, 64, 3, 1, padding=1),
36
+ nn.ReLU(inplace=True),
37
+ nn.Conv2d(64, 64, 3, 1, padding=1),
38
+ nn.ReLU(inplace=True),
39
+ nn.MaxPool2d(2, 2),
40
+
41
+ nn.Conv2d(64, 128, 3, 1, padding=1),
42
+ nn.ReLU(inplace=True),
43
+ nn.Conv2d(128, 128, 3, 1, padding=1),
44
+ nn.ReLU(inplace=True),
45
+ nn.MaxPool2d(2, 2),
46
+
47
+ nn.Conv2d(128, 256, 3, 1, padding=1),
48
+ nn.ReLU(inplace=True),
49
+ nn.Conv2d(256, 256, 3, 1, padding=1),
50
+ nn.ReLU(inplace=True),
51
+ nn.Conv2d(256, 256, 3, 1, padding=1),
52
+ nn.ReLU(inplace=True),
53
+ nn.MaxPool2d(2, 2, ceil_mode=True),
54
+
55
+ nn.Conv2d(256, 512, 3, 1, padding=1),
56
+ nn.ReLU(inplace=True),
57
+ nn.Conv2d(512, 512, 3, 1, padding=1),
58
+ nn.ReLU(inplace=True),
59
+ nn.Conv2d(512, 512, 3, 1, padding=1),
60
+ nn.ReLU(inplace=True),
61
+ nn.MaxPool2d(2, 2),
62
+
63
+ nn.Conv2d(512, 512, 3, 1, padding=1),
64
+ nn.ReLU(inplace=True),
65
+ nn.Conv2d(512, 512, 3, 1, padding=1),
66
+ nn.ReLU(inplace=True),
67
+ nn.Conv2d(512, 512, 3, 1, padding=1),
68
+ nn.ReLU(inplace=True),
69
+ nn.MaxPool2d(2, 2),
70
+
71
+ nn.Conv2d(512, 1024, 3, 1, padding=6, dilation=6),
72
+ nn.ReLU(inplace=True),
73
+ nn.Conv2d(1024, 1024, 1, 1),
74
+ nn.ReLU(inplace=True),
75
+ ])
76
+
77
+ self.L2Norm3_3 = L2Norm(256, 10)
78
+ self.L2Norm4_3 = L2Norm(512, 8)
79
+ self.L2Norm5_3 = L2Norm(512, 5)
80
+
81
+ self.extras = nn.ModuleList([
82
+ nn.Conv2d(1024, 256, 1, 1),
83
+ nn.Conv2d(256, 512, 3, 2, padding=1),
84
+ nn.Conv2d(512, 128, 1, 1),
85
+ nn.Conv2d(128, 256, 3, 2, padding=1),
86
+ ])
87
+
88
+ self.loc = nn.ModuleList([
89
+ nn.Conv2d(256, 4, 3, 1, padding=1),
90
+ nn.Conv2d(512, 4, 3, 1, padding=1),
91
+ nn.Conv2d(512, 4, 3, 1, padding=1),
92
+ nn.Conv2d(1024, 4, 3, 1, padding=1),
93
+ nn.Conv2d(512, 4, 3, 1, padding=1),
94
+ nn.Conv2d(256, 4, 3, 1, padding=1),
95
+ ])
96
+
97
+ self.conf = nn.ModuleList([
98
+ nn.Conv2d(256, 4, 3, 1, padding=1),
99
+ nn.Conv2d(512, 2, 3, 1, padding=1),
100
+ nn.Conv2d(512, 2, 3, 1, padding=1),
101
+ nn.Conv2d(1024, 2, 3, 1, padding=1),
102
+ nn.Conv2d(512, 2, 3, 1, padding=1),
103
+ nn.Conv2d(256, 2, 3, 1, padding=1),
104
+ ])
105
+
106
+ self.softmax = nn.Softmax(dim=-1)
107
+ self.detect = Detect()
108
+
109
+ def forward(self, x):
110
+ size = x.size()[2:]
111
+ sources = list()
112
+ loc = list()
113
+ conf = list()
114
+
115
+ for k in range(16):
116
+ x = self.vgg[k](x)
117
+ s = self.L2Norm3_3(x)
118
+ sources.append(s)
119
+
120
+ for k in range(16, 23):
121
+ x = self.vgg[k](x)
122
+ s = self.L2Norm4_3(x)
123
+ sources.append(s)
124
+
125
+ for k in range(23, 30):
126
+ x = self.vgg[k](x)
127
+ s = self.L2Norm5_3(x)
128
+ sources.append(s)
129
+
130
+ for k in range(30, len(self.vgg)):
131
+ x = self.vgg[k](x)
132
+ sources.append(x)
133
+
134
+ # apply extra layers and cache source layer outputs
135
+ for k, v in enumerate(self.extras):
136
+ x = F.relu(v(x), inplace=True)
137
+ if k % 2 == 1:
138
+ sources.append(x)
139
+
140
+ # apply multibox head to source layers
141
+ loc_x = self.loc[0](sources[0])
142
+ conf_x = self.conf[0](sources[0])
143
+
144
+ max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
145
+ conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)
146
+
147
+ loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
148
+ conf.append(conf_x.permute(0, 2, 3, 1).contiguous())
149
+
150
+ for i in range(1, len(sources)):
151
+ x = sources[i]
152
+ conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
153
+ loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())
154
+
155
+ features_maps = []
156
+ for i in range(len(loc)):
157
+ feat = []
158
+ feat += [loc[i].size(1), loc[i].size(2)]
159
+ features_maps += [feat]
160
+
161
+ loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
162
+ conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
163
+
164
+ with torch.no_grad():
165
+ self.priorbox = PriorBox(size, features_maps)
166
+ self.priors = self.priorbox.forward()
167
+
168
+ output = self.detect.forward(
169
+ loc.view(loc.size(0), -1, 4),
170
+ self.softmax(conf.view(conf.size(0), -1, 2)),
171
+ self.priors.type(type(x.data)).to(self.device)
172
+ )
173
+
174
+ return output
eval/draw_syncnet_lines.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import matplotlib.pyplot as plt
17
+
18
+
19
+ class Chart:
20
+ def __init__(self):
21
+ self.loss_list = []
22
+
23
+ def add_ckpt(self, ckpt_path, line_name):
24
+ ckpt = torch.load(ckpt_path, map_location="cpu")
25
+ train_step_list = ckpt["train_step_list"]
26
+ train_loss_list = ckpt["train_loss_list"]
27
+ val_step_list = ckpt["val_step_list"]
28
+ val_loss_list = ckpt["val_loss_list"]
29
+ val_step_list = [val_step_list[0]] + val_step_list[4::5]
30
+ val_loss_list = [val_loss_list[0]] + val_loss_list[4::5]
31
+ self.loss_list.append((line_name, train_step_list, train_loss_list, val_step_list, val_loss_list))
32
+
33
+ def draw(self, save_path, plot_val=True):
34
+ # Global settings
35
+ plt.rcParams["font.size"] = 14
36
+ plt.rcParams["font.family"] = "serif"
37
+ plt.rcParams["font.sans-serif"] = ["Arial", "DejaVu Sans", "Lucida Grande"]
38
+ plt.rcParams["font.serif"] = ["Times New Roman", "DejaVu Serif"]
39
+
40
+ # Creating the plot
41
+ plt.figure(figsize=(7.766, 4.8)) # Golden ratio
42
+ for loss in self.loss_list:
43
+ if plot_val:
44
+ (line,) = plt.plot(loss[1], loss[2], label=loss[0], linewidth=0.5, alpha=0.5)
45
+ line_color = line.get_color()
46
+ plt.plot(loss[3], loss[4], linewidth=1.5, color=line_color)
47
+ else:
48
+ plt.plot(loss[1], loss[2], label=loss[0], linewidth=1)
49
+ plt.xlabel("Step")
50
+ plt.ylabel("Loss")
51
+ legend = plt.legend()
52
+ # legend = plt.legend(loc='upper right', bbox_to_anchor=(1, 0.82))
53
+
54
+ # Adjust the linewidth of legend
55
+ for line in legend.get_lines():
56
+ line.set_linewidth(2)
57
+
58
+ plt.savefig(save_path, transparent=True)
59
+ plt.close()
60
+
61
+
62
+ if __name__ == "__main__":
63
+ chart = Chart()
64
+ # chart.add_ckpt("output/syncnet/train-2024_10_25-18:14:43/checkpoints/checkpoint-10000.pt", "w/ self-attn")
65
+ # chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "w/o self-attn")
66
+ chart.add_ckpt("output/syncnet/train-2024_10_24-21:03:11/checkpoints/checkpoint-10000.pt", "Dim 512")
67
+ chart.add_ckpt("output/syncnet/train-2024_10_25-18:21:59/checkpoints/checkpoint-10000.pt", "Dim 2048")
68
+ chart.add_ckpt("output/syncnet/train-2024_10_24-22:37:04/checkpoints/checkpoint-10000.pt", "Dim 4096")
69
+ chart.add_ckpt("output/syncnet/train-2024_10_25-02:30:17/checkpoints/checkpoint-10000.pt", "Dim 6144")
70
+ chart.draw("ablation.pdf", plot_val=True)
eval/eval_fvd.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import mediapipe as mp
16
+ import cv2
17
+ from decord import VideoReader
18
+ from einops import rearrange
19
+ import os
20
+ import numpy as np
21
+ import torch
22
+ import tqdm
23
+ from eval.fvd import compute_our_fvd
24
+
25
+
26
+ class FVD:
27
+ def __init__(self, resolution=(224, 224)):
28
+ self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
29
+ self.resolution = resolution
30
+
31
+ def detect_face(self, image):
32
+ height, width = image.shape[:2]
33
+ # Process the image and detect faces.
34
+ results = self.face_detector.process(image)
35
+
36
+ if not results.detections: # Face not detected
37
+ raise Exception("Face not detected")
38
+
39
+ detection = results.detections[0] # Only use the first face in the image
40
+ bounding_box = detection.location_data.relative_bounding_box
41
+ xmin = int(bounding_box.xmin * width)
42
+ ymin = int(bounding_box.ymin * height)
43
+ face_width = int(bounding_box.width * width)
44
+ face_height = int(bounding_box.height * height)
45
+
46
+ # Crop the image to the bounding box.
47
+ xmin = max(0, xmin)
48
+ ymin = max(0, ymin)
49
+ xmax = min(width, xmin + face_width)
50
+ ymax = min(height, ymin + face_height)
51
+ image = image[ymin:ymax, xmin:xmax]
52
+
53
+ return image
54
+
55
+ def detect_video(self, video_path, real: bool = True):
56
+ vr = VideoReader(video_path)
57
+ video_frames = vr[20:36].asnumpy() # Use one frame per second
58
+ vr.seek(0) # avoid memory leak
59
+ faces = []
60
+ for frame in video_frames:
61
+ face = self.detect_face(frame)
62
+ face = cv2.resize(face, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_AREA)
63
+ faces.append(face)
64
+
65
+ if len(faces) != 16:
66
+ return None
67
+ faces = np.stack(faces, axis=0) # (f, h, w, c)
68
+ faces = torch.from_numpy(faces)
69
+ return faces
70
+
71
+
72
+ def eval_fvd(real_videos_dir, fake_videos_dir):
73
+ fvd = FVD()
74
+ real_features_list = []
75
+ fake_features_list = []
76
+ for file in tqdm.tqdm(os.listdir(fake_videos_dir)):
77
+ if file.endswith(".mp4"):
78
+ real_video_path = os.path.join(real_videos_dir, file.replace("_out.mp4", ".mp4"))
79
+ fake_video_path = os.path.join(fake_videos_dir, file)
80
+ real_features = fvd.detect_video(real_video_path, real=True)
81
+ fake_features = fvd.detect_video(fake_video_path, real=False)
82
+ if real_features is None or fake_features is None:
83
+ continue
84
+ real_features_list.append(real_features)
85
+ fake_features_list.append(fake_features)
86
+
87
+ real_features = torch.stack(real_features_list) / 255.0
88
+ fake_features = torch.stack(fake_features_list) / 255.0
89
+ print(compute_our_fvd(real_features, fake_features, device="cpu"))
90
+
91
+
92
+ if __name__ == "__main__":
93
+ real_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/cross"
94
+ fake_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/latentsync_cross"
95
+
96
+ eval_fvd(real_videos_dir, fake_videos_dir)
eval/eval_sync_conf.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import argparse
16
+ import os
17
+ import tqdm
18
+ from statistics import fmean
19
+ from eval.syncnet import SyncNetEval
20
+ from eval.syncnet_detect import SyncNetDetector
21
+ from latentsync.utils.util import red_text
22
+ import torch
23
+
24
+
25
+ def syncnet_eval(syncnet, syncnet_detector, video_path, temp_dir, detect_results_dir="detect_results"):
26
+ syncnet_detector(video_path=video_path, min_track=50)
27
+ crop_videos = os.listdir(os.path.join(detect_results_dir, "crop"))
28
+ if crop_videos == []:
29
+ raise Exception(red_text(f"Face not detected in {video_path}"))
30
+ av_offset_list = []
31
+ conf_list = []
32
+ for video in crop_videos:
33
+ av_offset, _, conf = syncnet.evaluate(
34
+ video_path=os.path.join(detect_results_dir, "crop", video), temp_dir=temp_dir
35
+ )
36
+ av_offset_list.append(av_offset)
37
+ conf_list.append(conf)
38
+ av_offset = int(fmean(av_offset_list))
39
+ conf = fmean(conf_list)
40
+ print(f"Input video: {video_path}\nSyncNet confidence: {conf:.2f}\nAV offset: {av_offset}")
41
+ return av_offset, conf
42
+
43
+
44
+ def main():
45
+ parser = argparse.ArgumentParser(description="SyncNet")
46
+ parser.add_argument("--initial_model", type=str, default="checkpoints/auxiliary/syncnet_v2.model", help="")
47
+ parser.add_argument("--video_path", type=str, default=None, help="")
48
+ parser.add_argument("--videos_dir", type=str, default="/root/processed")
49
+ parser.add_argument("--temp_dir", type=str, default="temp", help="")
50
+
51
+ args = parser.parse_args()
52
+
53
+ device = "cuda" if torch.cuda.is_available() else "cpu"
54
+
55
+ syncnet = SyncNetEval(device=device)
56
+ syncnet.loadParameters(args.initial_model)
57
+
58
+ syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results")
59
+
60
+ if args.video_path is not None:
61
+ syncnet_eval(syncnet, syncnet_detector, args.video_path, args.temp_dir)
62
+ else:
63
+ sync_conf_list = []
64
+ video_names = sorted([f for f in os.listdir(args.videos_dir) if f.endswith(".mp4")])
65
+ for video_name in tqdm.tqdm(video_names):
66
+ try:
67
+ _, conf = syncnet_eval(
68
+ syncnet, syncnet_detector, os.path.join(args.videos_dir, video_name), args.temp_dir
69
+ )
70
+ sync_conf_list.append(conf)
71
+ except Exception as e:
72
+ print(e)
73
+ print(f"The average sync confidence is {fmean(sync_conf_list):.02f}")
74
+
75
+
76
+ if __name__ == "__main__":
77
+ main()
eval/eval_sync_conf.sh ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #!/bin/bash
2
+ python -m eval.eval_sync_conf --video_path "RD_Radio1_000_006_out.mp4"
eval/eval_syncnet_acc.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import argparse
16
+ from tqdm.auto import tqdm
17
+ import torch
18
+ import torch.nn as nn
19
+ from einops import rearrange
20
+ from latentsync.models.syncnet import SyncNet
21
+ from latentsync.data.syncnet_dataset import SyncNetDataset
22
+ from diffusers import AutoencoderKL
23
+ from omegaconf import OmegaConf
24
+ from accelerate.utils import set_seed
25
+
26
+
27
+ def main(config):
28
+ set_seed(config.run.seed)
29
+
30
+ device = "cuda" if torch.cuda.is_available() else "cpu"
31
+
32
+ if config.data.latent_space:
33
+ vae = AutoencoderKL.from_pretrained(
34
+ "runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16
35
+ )
36
+ vae.requires_grad_(False)
37
+ vae.to(device)
38
+
39
+ # Dataset and Dataloader setup
40
+ dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config)
41
+
42
+ test_dataloader = torch.utils.data.DataLoader(
43
+ dataset,
44
+ batch_size=config.data.batch_size,
45
+ shuffle=False,
46
+ num_workers=config.data.num_workers,
47
+ drop_last=False,
48
+ worker_init_fn=dataset.worker_init_fn,
49
+ )
50
+
51
+ # Model
52
+ syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device)
53
+
54
+ print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}")
55
+ checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device)
56
+
57
+ syncnet.load_state_dict(checkpoint["state_dict"])
58
+ syncnet.to(dtype=torch.float16)
59
+ syncnet.requires_grad_(False)
60
+ syncnet.eval()
61
+
62
+ global_step = 0
63
+ num_val_batches = config.data.num_val_samples // config.data.batch_size
64
+ progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy")
65
+
66
+ num_correct_preds = 0
67
+ num_total_preds = 0
68
+
69
+ while True:
70
+ for step, batch in enumerate(test_dataloader):
71
+ ### >>>> Test >>>> ###
72
+
73
+ frames = batch["frames"].to(device, dtype=torch.float16)
74
+ audio_samples = batch["audio_samples"].to(device, dtype=torch.float16)
75
+ y = batch["y"].to(device, dtype=torch.float16).squeeze(1)
76
+
77
+ if config.data.latent_space:
78
+ frames = rearrange(frames, "b f c h w -> (b f) c h w")
79
+
80
+ with torch.no_grad():
81
+ frames = vae.encode(frames).latent_dist.sample() * 0.18215
82
+
83
+ frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames)
84
+ else:
85
+ frames = rearrange(frames, "b f c h w -> b (f c) h w")
86
+
87
+ if config.data.lower_half:
88
+ height = frames.shape[2]
89
+ frames = frames[:, :, height // 2 :, :]
90
+
91
+ with torch.no_grad():
92
+ vision_embeds, audio_embeds = syncnet(frames, audio_samples)
93
+
94
+ sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds)
95
+
96
+ preds = (sims > 0.5).to(dtype=torch.float16)
97
+ num_correct_preds += (preds == y).sum().item()
98
+ num_total_preds += len(sims)
99
+
100
+ progress_bar.update(1)
101
+ global_step += 1
102
+
103
+ if global_step >= num_val_batches:
104
+ progress_bar.close()
105
+ print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%")
106
+ return
107
+
108
+
109
+ if __name__ == "__main__":
110
+ parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator")
111
+
112
+ parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml")
113
+ args = parser.parse_args()
114
+
115
+ # Load a configuration file
116
+ config = OmegaConf.load(args.config_path)
117
+
118
+ main(config)
eval/eval_syncnet_acc.sh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m eval.eval_syncnet_acc --config_path "configs/syncnet/syncnet_16_pixel.yaml"
eval/fvd.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/universome/fvd-comparison/blob/master/our_fvd.py
2
+
3
+ from typing import Tuple
4
+ import scipy
5
+ import numpy as np
6
+ import torch
7
+
8
+
9
+ def compute_fvd(feats_fake: np.ndarray, feats_real: np.ndarray) -> float:
10
+ mu_gen, sigma_gen = compute_stats(feats_fake)
11
+ mu_real, sigma_real = compute_stats(feats_real)
12
+
13
+ m = np.square(mu_gen - mu_real).sum()
14
+ s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member
15
+ fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2))
16
+
17
+ return float(fid)
18
+
19
+
20
+ def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
21
+ mu = feats.mean(axis=0) # [d]
22
+ sigma = np.cov(feats, rowvar=False) # [d, d]
23
+
24
+ return mu, sigma
25
+
26
+
27
+ @torch.no_grad()
28
+ def compute_our_fvd(videos_fake: np.ndarray, videos_real: np.ndarray, device: str = "cuda") -> float:
29
+ i3d_path = "checkpoints/auxiliary/i3d_torchscript.pt"
30
+ i3d_kwargs = dict(
31
+ rescale=False, resize=False, return_features=True
32
+ ) # Return raw features before the softmax layer.
33
+
34
+ with open(i3d_path, "rb") as f:
35
+ i3d_model = torch.jit.load(f).eval().to(device)
36
+
37
+ videos_fake = videos_fake.permute(0, 4, 1, 2, 3).to(device)
38
+ videos_real = videos_real.permute(0, 4, 1, 2, 3).to(device)
39
+
40
+ feats_fake = i3d_model(videos_fake, **i3d_kwargs).cpu().numpy()
41
+ feats_real = i3d_model(videos_real, **i3d_kwargs).cpu().numpy()
42
+
43
+ return compute_fvd(feats_fake, feats_real)
44
+
45
+
46
+ def main():
47
+ # input shape: (b, f, h, w, c)
48
+ videos_fake = torch.rand(10, 16, 224, 224, 3)
49
+ videos_real = torch.rand(10, 16, 224, 224, 3)
50
+
51
+ our_fvd_result = compute_our_fvd(videos_fake, videos_real)
52
+ print(f"[FVD scores] Ours: {our_fvd_result}")
53
+
54
+
55
+ if __name__ == "__main__":
56
+ main()
eval/hyper_iqa.py ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/SSL92/hyperIQA/blob/master/models.py
2
+
3
+ import torch as torch
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+ from torch.nn import init
7
+ import math
8
+ import torch.utils.model_zoo as model_zoo
9
+
10
+ model_urls = {
11
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
12
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
13
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
14
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
15
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
16
+ }
17
+
18
+
19
+ class HyperNet(nn.Module):
20
+ """
21
+ Hyper network for learning perceptual rules.
22
+
23
+ Args:
24
+ lda_out_channels: local distortion aware module output size.
25
+ hyper_in_channels: input feature channels for hyper network.
26
+ target_in_size: input vector size for target network.
27
+ target_fc(i)_size: fully connection layer size of target network.
28
+ feature_size: input feature map width/height for hyper network.
29
+
30
+ Note:
31
+ For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'.
32
+
33
+ """
34
+ def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size):
35
+ super(HyperNet, self).__init__()
36
+
37
+ self.hyperInChn = hyper_in_channels
38
+ self.target_in_size = target_in_size
39
+ self.f1 = target_fc1_size
40
+ self.f2 = target_fc2_size
41
+ self.f3 = target_fc3_size
42
+ self.f4 = target_fc4_size
43
+ self.feature_size = feature_size
44
+
45
+ self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True)
46
+
47
+ self.pool = nn.AdaptiveAvgPool2d((1, 1))
48
+
49
+ # Conv layers for resnet output features
50
+ self.conv1 = nn.Sequential(
51
+ nn.Conv2d(2048, 1024, 1, padding=(0, 0)),
52
+ nn.ReLU(inplace=True),
53
+ nn.Conv2d(1024, 512, 1, padding=(0, 0)),
54
+ nn.ReLU(inplace=True),
55
+ nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)),
56
+ nn.ReLU(inplace=True)
57
+ )
58
+
59
+ # Hyper network part, conv for generating target fc weights, fc for generating target fc biases
60
+ self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1))
61
+ self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1)
62
+
63
+ self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1))
64
+ self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2)
65
+
66
+ self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1))
67
+ self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3)
68
+
69
+ self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1))
70
+ self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4)
71
+
72
+ self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4)
73
+ self.fc5b_fc = nn.Linear(self.hyperInChn, 1)
74
+
75
+ # initialize
76
+ for i, m_name in enumerate(self._modules):
77
+ if i > 2:
78
+ nn.init.kaiming_normal_(self._modules[m_name].weight.data)
79
+
80
+ def forward(self, img):
81
+ feature_size = self.feature_size
82
+
83
+ res_out = self.res(img)
84
+
85
+ # input vector for target net
86
+ target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1)
87
+
88
+ # input features for hyper net
89
+ hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size)
90
+
91
+ # generating target net weights & biases
92
+ target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1)
93
+ target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1)
94
+
95
+ target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1)
96
+ target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2)
97
+
98
+ target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1)
99
+ target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3)
100
+
101
+ target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1)
102
+ target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4)
103
+
104
+ target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1)
105
+ target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1)
106
+
107
+ out = {}
108
+ out['target_in_vec'] = target_in_vec
109
+ out['target_fc1w'] = target_fc1w
110
+ out['target_fc1b'] = target_fc1b
111
+ out['target_fc2w'] = target_fc2w
112
+ out['target_fc2b'] = target_fc2b
113
+ out['target_fc3w'] = target_fc3w
114
+ out['target_fc3b'] = target_fc3b
115
+ out['target_fc4w'] = target_fc4w
116
+ out['target_fc4b'] = target_fc4b
117
+ out['target_fc5w'] = target_fc5w
118
+ out['target_fc5b'] = target_fc5b
119
+
120
+ return out
121
+
122
+
123
+ class TargetNet(nn.Module):
124
+ """
125
+ Target network for quality prediction.
126
+ """
127
+ def __init__(self, paras):
128
+ super(TargetNet, self).__init__()
129
+ self.l1 = nn.Sequential(
130
+ TargetFC(paras['target_fc1w'], paras['target_fc1b']),
131
+ nn.Sigmoid(),
132
+ )
133
+ self.l2 = nn.Sequential(
134
+ TargetFC(paras['target_fc2w'], paras['target_fc2b']),
135
+ nn.Sigmoid(),
136
+ )
137
+
138
+ self.l3 = nn.Sequential(
139
+ TargetFC(paras['target_fc3w'], paras['target_fc3b']),
140
+ nn.Sigmoid(),
141
+ )
142
+
143
+ self.l4 = nn.Sequential(
144
+ TargetFC(paras['target_fc4w'], paras['target_fc4b']),
145
+ nn.Sigmoid(),
146
+ TargetFC(paras['target_fc5w'], paras['target_fc5b']),
147
+ )
148
+
149
+ def forward(self, x):
150
+ q = self.l1(x)
151
+ # q = F.dropout(q)
152
+ q = self.l2(q)
153
+ q = self.l3(q)
154
+ q = self.l4(q).squeeze()
155
+ return q
156
+
157
+
158
+ class TargetFC(nn.Module):
159
+ """
160
+ Fully connection operations for target net
161
+
162
+ Note:
163
+ Weights & biases are different for different images in a batch,
164
+ thus here we use group convolution for calculating images in a batch with individual weights & biases.
165
+ """
166
+ def __init__(self, weight, bias):
167
+ super(TargetFC, self).__init__()
168
+ self.weight = weight
169
+ self.bias = bias
170
+
171
+ def forward(self, input_):
172
+
173
+ input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3])
174
+ weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4])
175
+ bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1])
176
+ out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0])
177
+
178
+ return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3])
179
+
180
+
181
+ class Bottleneck(nn.Module):
182
+ expansion = 4
183
+
184
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
185
+ super(Bottleneck, self).__init__()
186
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
187
+ self.bn1 = nn.BatchNorm2d(planes)
188
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
189
+ padding=1, bias=False)
190
+ self.bn2 = nn.BatchNorm2d(planes)
191
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
192
+ self.bn3 = nn.BatchNorm2d(planes * 4)
193
+ self.relu = nn.ReLU(inplace=True)
194
+ self.downsample = downsample
195
+ self.stride = stride
196
+
197
+ def forward(self, x):
198
+ residual = x
199
+
200
+ out = self.conv1(x)
201
+ out = self.bn1(out)
202
+ out = self.relu(out)
203
+
204
+ out = self.conv2(out)
205
+ out = self.bn2(out)
206
+ out = self.relu(out)
207
+
208
+ out = self.conv3(out)
209
+ out = self.bn3(out)
210
+
211
+ if self.downsample is not None:
212
+ residual = self.downsample(x)
213
+
214
+ out += residual
215
+ out = self.relu(out)
216
+
217
+ return out
218
+
219
+
220
+ class ResNetBackbone(nn.Module):
221
+
222
+ def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000):
223
+ super(ResNetBackbone, self).__init__()
224
+ self.inplanes = 64
225
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
226
+ self.bn1 = nn.BatchNorm2d(64)
227
+ self.relu = nn.ReLU(inplace=True)
228
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
229
+ self.layer1 = self._make_layer(block, 64, layers[0])
230
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
231
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
232
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
233
+
234
+ # local distortion aware module
235
+ self.lda1_pool = nn.Sequential(
236
+ nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False),
237
+ nn.AvgPool2d(7, stride=7),
238
+ )
239
+ self.lda1_fc = nn.Linear(16 * 64, lda_out_channels)
240
+
241
+ self.lda2_pool = nn.Sequential(
242
+ nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False),
243
+ nn.AvgPool2d(7, stride=7),
244
+ )
245
+ self.lda2_fc = nn.Linear(32 * 16, lda_out_channels)
246
+
247
+ self.lda3_pool = nn.Sequential(
248
+ nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False),
249
+ nn.AvgPool2d(7, stride=7),
250
+ )
251
+ self.lda3_fc = nn.Linear(64 * 4, lda_out_channels)
252
+
253
+ self.lda4_pool = nn.AvgPool2d(7, stride=7)
254
+ self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3)
255
+
256
+ for m in self.modules():
257
+ if isinstance(m, nn.Conv2d):
258
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
259
+ m.weight.data.normal_(0, math.sqrt(2. / n))
260
+ elif isinstance(m, nn.BatchNorm2d):
261
+ m.weight.data.fill_(1)
262
+ m.bias.data.zero_()
263
+
264
+ # initialize
265
+ nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data)
266
+ nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data)
267
+ nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data)
268
+ nn.init.kaiming_normal_(self.lda1_fc.weight.data)
269
+ nn.init.kaiming_normal_(self.lda2_fc.weight.data)
270
+ nn.init.kaiming_normal_(self.lda3_fc.weight.data)
271
+ nn.init.kaiming_normal_(self.lda4_fc.weight.data)
272
+
273
+ def _make_layer(self, block, planes, blocks, stride=1):
274
+ downsample = None
275
+ if stride != 1 or self.inplanes != planes * block.expansion:
276
+ downsample = nn.Sequential(
277
+ nn.Conv2d(self.inplanes, planes * block.expansion,
278
+ kernel_size=1, stride=stride, bias=False),
279
+ nn.BatchNorm2d(planes * block.expansion),
280
+ )
281
+
282
+ layers = []
283
+ layers.append(block(self.inplanes, planes, stride, downsample))
284
+ self.inplanes = planes * block.expansion
285
+ for i in range(1, blocks):
286
+ layers.append(block(self.inplanes, planes))
287
+
288
+ return nn.Sequential(*layers)
289
+
290
+ def forward(self, x):
291
+ x = self.conv1(x)
292
+ x = self.bn1(x)
293
+ x = self.relu(x)
294
+ x = self.maxpool(x)
295
+ x = self.layer1(x)
296
+
297
+ # the same effect as lda operation in the paper, but save much more memory
298
+ lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1))
299
+ x = self.layer2(x)
300
+ lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1))
301
+ x = self.layer3(x)
302
+ lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1))
303
+ x = self.layer4(x)
304
+ lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1))
305
+
306
+ vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1)
307
+
308
+ out = {}
309
+ out['hyper_in_feat'] = x
310
+ out['target_in_vec'] = vec
311
+
312
+ return out
313
+
314
+
315
+ def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs):
316
+ """Constructs a ResNet-50 model_hyper.
317
+
318
+ Args:
319
+ pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet
320
+ """
321
+ model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs)
322
+ if pretrained:
323
+ save_model = model_zoo.load_url(model_urls['resnet50'])
324
+ model_dict = model.state_dict()
325
+ state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
326
+ model_dict.update(state_dict)
327
+ model.load_state_dict(model_dict)
328
+ else:
329
+ model.apply(weights_init_xavier)
330
+ return model
331
+
332
+
333
+ def weights_init_xavier(m):
334
+ classname = m.__class__.__name__
335
+ # print(classname)
336
+ # if isinstance(m, nn.Conv2d):
337
+ if classname.find('Conv') != -1:
338
+ init.kaiming_normal_(m.weight.data)
339
+ elif classname.find('Linear') != -1:
340
+ init.kaiming_normal_(m.weight.data)
341
+ elif classname.find('BatchNorm2d') != -1:
342
+ init.uniform_(m.weight.data, 1.0, 0.02)
343
+ init.constant_(m.bias.data, 0.0)
eval/inference_videos.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import subprocess
17
+ from tqdm import tqdm
18
+
19
+
20
+ def inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path):
21
+ os.makedirs(output_dir, exist_ok=True)
22
+ video_names = sorted([f for f in os.listdir(input_dir) if f.endswith(".mp4")])
23
+ for video_name in tqdm(video_names):
24
+ video_path = os.path.join(input_dir, video_name)
25
+ audio_path = os.path.join(input_dir, video_name.replace(".mp4", "_audio.wav"))
26
+ video_out_path = os.path.join(output_dir, video_name.replace(".mp4", "_out.mp4"))
27
+ inference_command = f"python inference.py --unet_config_path {unet_config_path} --video_path {video_path} --audio_path {audio_path} --video_out_path {video_out_path} --inference_ckpt_path {ckpt_path} --seed 1247"
28
+ subprocess.run(inference_command, shell=True)
29
+
30
+
31
+ if __name__ == "__main__":
32
+ input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/cross"
33
+ output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/HDTF/segmented/latentsync_cross"
34
+ unet_config_path = "configs/unet/unet_latent_16_diffusion.yaml"
35
+ ckpt_path = "output/unet/train-2024_10_08-16:23:43/checkpoints/checkpoint-1920000.pt"
36
+
37
+ inference_video_from_dir(input_dir, output_dir, unet_config_path, ckpt_path)
eval/syncnet/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .syncnet_eval import SyncNetEval
eval/syncnet/syncnet.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/joonson/syncnet_python/blob/master/SyncNetModel.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+
7
+ def save(model, filename):
8
+ with open(filename, "wb") as f:
9
+ torch.save(model, f)
10
+ print("%s saved." % filename)
11
+
12
+
13
+ def load(filename):
14
+ net = torch.load(filename)
15
+ return net
16
+
17
+
18
+ class S(nn.Module):
19
+ def __init__(self, num_layers_in_fc_layers=1024):
20
+ super(S, self).__init__()
21
+
22
+ self.__nFeatures__ = 24
23
+ self.__nChs__ = 32
24
+ self.__midChs__ = 32
25
+
26
+ self.netcnnaud = nn.Sequential(
27
+ nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
28
+ nn.BatchNorm2d(64),
29
+ nn.ReLU(inplace=True),
30
+ nn.MaxPool2d(kernel_size=(1, 1), stride=(1, 1)),
31
+ nn.Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
32
+ nn.BatchNorm2d(192),
33
+ nn.ReLU(inplace=True),
34
+ nn.MaxPool2d(kernel_size=(3, 3), stride=(1, 2)),
35
+ nn.Conv2d(192, 384, kernel_size=(3, 3), padding=(1, 1)),
36
+ nn.BatchNorm2d(384),
37
+ nn.ReLU(inplace=True),
38
+ nn.Conv2d(384, 256, kernel_size=(3, 3), padding=(1, 1)),
39
+ nn.BatchNorm2d(256),
40
+ nn.ReLU(inplace=True),
41
+ nn.Conv2d(256, 256, kernel_size=(3, 3), padding=(1, 1)),
42
+ nn.BatchNorm2d(256),
43
+ nn.ReLU(inplace=True),
44
+ nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)),
45
+ nn.Conv2d(256, 512, kernel_size=(5, 4), padding=(0, 0)),
46
+ nn.BatchNorm2d(512),
47
+ nn.ReLU(),
48
+ )
49
+
50
+ self.netfcaud = nn.Sequential(
51
+ nn.Linear(512, 512),
52
+ nn.BatchNorm1d(512),
53
+ nn.ReLU(),
54
+ nn.Linear(512, num_layers_in_fc_layers),
55
+ )
56
+
57
+ self.netfclip = nn.Sequential(
58
+ nn.Linear(512, 512),
59
+ nn.BatchNorm1d(512),
60
+ nn.ReLU(),
61
+ nn.Linear(512, num_layers_in_fc_layers),
62
+ )
63
+
64
+ self.netcnnlip = nn.Sequential(
65
+ nn.Conv3d(3, 96, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=0),
66
+ nn.BatchNorm3d(96),
67
+ nn.ReLU(inplace=True),
68
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
69
+ nn.Conv3d(96, 256, kernel_size=(1, 5, 5), stride=(1, 2, 2), padding=(0, 1, 1)),
70
+ nn.BatchNorm3d(256),
71
+ nn.ReLU(inplace=True),
72
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)),
73
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
74
+ nn.BatchNorm3d(256),
75
+ nn.ReLU(inplace=True),
76
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
77
+ nn.BatchNorm3d(256),
78
+ nn.ReLU(inplace=True),
79
+ nn.Conv3d(256, 256, kernel_size=(1, 3, 3), padding=(0, 1, 1)),
80
+ nn.BatchNorm3d(256),
81
+ nn.ReLU(inplace=True),
82
+ nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2)),
83
+ nn.Conv3d(256, 512, kernel_size=(1, 6, 6), padding=0),
84
+ nn.BatchNorm3d(512),
85
+ nn.ReLU(inplace=True),
86
+ )
87
+
88
+ def forward_aud(self, x):
89
+
90
+ mid = self.netcnnaud(x)
91
+ # N x ch x 24 x M
92
+ mid = mid.view((mid.size()[0], -1))
93
+ # N x (ch x 24)
94
+ out = self.netfcaud(mid)
95
+
96
+ return out
97
+
98
+ def forward_lip(self, x):
99
+
100
+ mid = self.netcnnlip(x)
101
+ mid = mid.view((mid.size()[0], -1))
102
+ # N x (ch x 24)
103
+ out = self.netfclip(mid)
104
+
105
+ return out
106
+
107
+ def forward_lipfeat(self, x):
108
+
109
+ mid = self.netcnnlip(x)
110
+ out = mid.view((mid.size()[0], -1))
111
+ # N x (ch x 24)
112
+
113
+ return out
eval/syncnet/syncnet_eval.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/joonson/syncnet_python/blob/master/SyncNetInstance.py
2
+
3
+ import torch
4
+ import numpy
5
+ import time, pdb, argparse, subprocess, os, math, glob
6
+ import cv2
7
+ import python_speech_features
8
+
9
+ from scipy import signal
10
+ from scipy.io import wavfile
11
+ from .syncnet import S
12
+ from shutil import rmtree
13
+
14
+
15
+ # ==================== Get OFFSET ====================
16
+
17
+ # Video 25 FPS, Audio 16000HZ
18
+
19
+
20
+ def calc_pdist(feat1, feat2, vshift=10):
21
+ win_size = vshift * 2 + 1
22
+
23
+ feat2p = torch.nn.functional.pad(feat2, (0, 0, vshift, vshift))
24
+
25
+ dists = []
26
+
27
+ for i in range(0, len(feat1)):
28
+
29
+ dists.append(
30
+ torch.nn.functional.pairwise_distance(feat1[[i], :].repeat(win_size, 1), feat2p[i : i + win_size, :])
31
+ )
32
+
33
+ return dists
34
+
35
+
36
+ # ==================== MAIN DEF ====================
37
+
38
+
39
+ class SyncNetEval(torch.nn.Module):
40
+ def __init__(self, dropout=0, num_layers_in_fc_layers=1024, device="cpu"):
41
+ super().__init__()
42
+
43
+ self.__S__ = S(num_layers_in_fc_layers=num_layers_in_fc_layers).to(device)
44
+ self.device = device
45
+
46
+ def evaluate(self, video_path, temp_dir="temp", batch_size=20, vshift=15):
47
+
48
+ self.__S__.eval()
49
+
50
+ # ========== ==========
51
+ # Convert files
52
+ # ========== ==========
53
+
54
+ if os.path.exists(temp_dir):
55
+ rmtree(temp_dir)
56
+
57
+ os.makedirs(temp_dir)
58
+
59
+ # temp_video_path = os.path.join(temp_dir, "temp.mp4")
60
+ # command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -vf scale='224:224' {temp_video_path}"
61
+ # subprocess.call(command, shell=True)
62
+
63
+ command = (
64
+ f"ffmpeg -loglevel error -nostdin -y -i {video_path} -f image2 {os.path.join(temp_dir, '%06d.jpg')}"
65
+ )
66
+ subprocess.call(command, shell=True, stdout=None)
67
+
68
+ command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(temp_dir, 'audio.wav')}"
69
+ subprocess.call(command, shell=True, stdout=None)
70
+
71
+ # ========== ==========
72
+ # Load video
73
+ # ========== ==========
74
+
75
+ images = []
76
+
77
+ flist = glob.glob(os.path.join(temp_dir, "*.jpg"))
78
+ flist.sort()
79
+
80
+ for fname in flist:
81
+ img_input = cv2.imread(fname)
82
+ img_input = cv2.resize(img_input, (224, 224)) # HARD CODED, CHANGE BEFORE RELEASE
83
+ images.append(img_input)
84
+
85
+ im = numpy.stack(images, axis=3)
86
+ im = numpy.expand_dims(im, axis=0)
87
+ im = numpy.transpose(im, (0, 3, 4, 1, 2))
88
+
89
+ imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
90
+
91
+ # ========== ==========
92
+ # Load audio
93
+ # ========== ==========
94
+
95
+ sample_rate, audio = wavfile.read(os.path.join(temp_dir, "audio.wav"))
96
+ mfcc = zip(*python_speech_features.mfcc(audio, sample_rate))
97
+ mfcc = numpy.stack([numpy.array(i) for i in mfcc])
98
+
99
+ cc = numpy.expand_dims(numpy.expand_dims(mfcc, axis=0), axis=0)
100
+ cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float())
101
+
102
+ # ========== ==========
103
+ # Check audio and video input length
104
+ # ========== ==========
105
+
106
+ # if (float(len(audio)) / 16000) != (float(len(images)) / 25):
107
+ # print(
108
+ # "WARNING: Audio (%.4fs) and video (%.4fs) lengths are different."
109
+ # % (float(len(audio)) / 16000, float(len(images)) / 25)
110
+ # )
111
+
112
+ min_length = min(len(images), math.floor(len(audio) / 640))
113
+
114
+ # ========== ==========
115
+ # Generate video and audio feats
116
+ # ========== ==========
117
+
118
+ lastframe = min_length - 5
119
+ im_feat = []
120
+ cc_feat = []
121
+
122
+ tS = time.time()
123
+ for i in range(0, lastframe, batch_size):
124
+
125
+ im_batch = [imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + batch_size))]
126
+ im_in = torch.cat(im_batch, 0)
127
+ im_out = self.__S__.forward_lip(im_in.to(self.device))
128
+ im_feat.append(im_out.data.cpu())
129
+
130
+ cc_batch = [
131
+ cct[:, :, :, vframe * 4 : vframe * 4 + 20] for vframe in range(i, min(lastframe, i + batch_size))
132
+ ]
133
+ cc_in = torch.cat(cc_batch, 0)
134
+ cc_out = self.__S__.forward_aud(cc_in.to(self.device))
135
+ cc_feat.append(cc_out.data.cpu())
136
+
137
+ im_feat = torch.cat(im_feat, 0)
138
+ cc_feat = torch.cat(cc_feat, 0)
139
+
140
+ # ========== ==========
141
+ # Compute offset
142
+ # ========== ==========
143
+
144
+ dists = calc_pdist(im_feat, cc_feat, vshift=vshift)
145
+ mean_dists = torch.mean(torch.stack(dists, 1), 1)
146
+
147
+ min_dist, minidx = torch.min(mean_dists, 0)
148
+
149
+ av_offset = vshift - minidx
150
+ conf = torch.median(mean_dists) - min_dist
151
+
152
+ fdist = numpy.stack([dist[minidx].numpy() for dist in dists])
153
+ # fdist = numpy.pad(fdist, (3,3), 'constant', constant_values=15)
154
+ fconf = torch.median(mean_dists).numpy() - fdist
155
+ framewise_conf = signal.medfilt(fconf, kernel_size=9)
156
+
157
+ # numpy.set_printoptions(formatter={"float": "{: 0.3f}".format})
158
+ rmtree(temp_dir)
159
+ return av_offset.item(), min_dist.item(), conf.item()
160
+
161
+ def extract_feature(self, opt, videofile):
162
+
163
+ self.__S__.eval()
164
+
165
+ # ========== ==========
166
+ # Load video
167
+ # ========== ==========
168
+ cap = cv2.VideoCapture(videofile)
169
+
170
+ frame_num = 1
171
+ images = []
172
+ while frame_num:
173
+ frame_num += 1
174
+ ret, image = cap.read()
175
+ if ret == 0:
176
+ break
177
+
178
+ images.append(image)
179
+
180
+ im = numpy.stack(images, axis=3)
181
+ im = numpy.expand_dims(im, axis=0)
182
+ im = numpy.transpose(im, (0, 3, 4, 1, 2))
183
+
184
+ imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
185
+
186
+ # ========== ==========
187
+ # Generate video feats
188
+ # ========== ==========
189
+
190
+ lastframe = len(images) - 4
191
+ im_feat = []
192
+
193
+ tS = time.time()
194
+ for i in range(0, lastframe, opt.batch_size):
195
+
196
+ im_batch = [
197
+ imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + opt.batch_size))
198
+ ]
199
+ im_in = torch.cat(im_batch, 0)
200
+ im_out = self.__S__.forward_lipfeat(im_in.to(self.device))
201
+ im_feat.append(im_out.data.cpu())
202
+
203
+ im_feat = torch.cat(im_feat, 0)
204
+
205
+ # ========== ==========
206
+ # Compute offset
207
+ # ========== ==========
208
+
209
+ print("Compute time %.3f sec." % (time.time() - tS))
210
+
211
+ return im_feat
212
+
213
+ def loadParameters(self, path):
214
+ loaded_state = torch.load(path, map_location=lambda storage, loc: storage)
215
+
216
+ self_state = self.__S__.state_dict()
217
+
218
+ for name, param in loaded_state.items():
219
+
220
+ self_state[name].copy_(param)
eval/syncnet_detect.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/joonson/syncnet_python/blob/master/run_pipeline.py
2
+
3
+ import os, pdb, subprocess, glob, cv2
4
+ import numpy as np
5
+ from shutil import rmtree
6
+ import torch
7
+
8
+ from scenedetect.video_manager import VideoManager
9
+ from scenedetect.scene_manager import SceneManager
10
+ from scenedetect.stats_manager import StatsManager
11
+ from scenedetect.detectors import ContentDetector
12
+
13
+ from scipy.interpolate import interp1d
14
+ from scipy.io import wavfile
15
+ from scipy import signal
16
+
17
+ from eval.detectors import S3FD
18
+
19
+
20
+ class SyncNetDetector:
21
+ def __init__(self, device, detect_results_dir="detect_results"):
22
+ self.s3f_detector = S3FD(device=device)
23
+ self.detect_results_dir = detect_results_dir
24
+
25
+ def __call__(self, video_path: str, min_track=50, scale=False):
26
+ crop_dir = os.path.join(self.detect_results_dir, "crop")
27
+ video_dir = os.path.join(self.detect_results_dir, "video")
28
+ frames_dir = os.path.join(self.detect_results_dir, "frames")
29
+ temp_dir = os.path.join(self.detect_results_dir, "temp")
30
+
31
+ # ========== DELETE EXISTING DIRECTORIES ==========
32
+ if os.path.exists(crop_dir):
33
+ rmtree(crop_dir)
34
+
35
+ if os.path.exists(video_dir):
36
+ rmtree(video_dir)
37
+
38
+ if os.path.exists(frames_dir):
39
+ rmtree(frames_dir)
40
+
41
+ if os.path.exists(temp_dir):
42
+ rmtree(temp_dir)
43
+
44
+ # ========== MAKE NEW DIRECTORIES ==========
45
+
46
+ os.makedirs(crop_dir)
47
+ os.makedirs(video_dir)
48
+ os.makedirs(frames_dir)
49
+ os.makedirs(temp_dir)
50
+
51
+ # ========== CONVERT VIDEO AND EXTRACT FRAMES ==========
52
+
53
+ if scale:
54
+ scaled_video_path = os.path.join(video_dir, "scaled.mp4")
55
+ command = f"ffmpeg -loglevel error -y -nostdin -i {video_path} -vf scale='224:224' {scaled_video_path}"
56
+ subprocess.run(command, shell=True)
57
+ video_path = scaled_video_path
58
+
59
+ command = f"ffmpeg -y -nostdin -loglevel error -i {video_path} -qscale:v 2 -async 1 -r 25 {os.path.join(video_dir, 'video.mp4')}"
60
+ subprocess.run(command, shell=True, stdout=None)
61
+
62
+ command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -qscale:v 2 -f image2 {os.path.join(frames_dir, '%06d.jpg')}"
63
+ subprocess.run(command, shell=True, stdout=None)
64
+
65
+ command = f"ffmpeg -y -nostdin -loglevel error -i {os.path.join(video_dir, 'video.mp4')} -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(video_dir, 'audio.wav')}"
66
+ subprocess.run(command, shell=True, stdout=None)
67
+
68
+ faces = self.detect_face(frames_dir)
69
+
70
+ scene = self.scene_detect(video_dir)
71
+
72
+ # Face tracking
73
+ alltracks = []
74
+
75
+ for shot in scene:
76
+ if shot[1].frame_num - shot[0].frame_num >= min_track:
77
+ alltracks.extend(self.track_face(faces[shot[0].frame_num : shot[1].frame_num], min_track=min_track))
78
+
79
+ # Face crop
80
+ for ii, track in enumerate(alltracks):
81
+ self.crop_video(track, os.path.join(crop_dir, "%05d" % ii), frames_dir, 25, temp_dir, video_dir)
82
+
83
+ rmtree(temp_dir)
84
+
85
+ def scene_detect(self, video_dir):
86
+ video_manager = VideoManager([os.path.join(video_dir, "video.mp4")])
87
+ stats_manager = StatsManager()
88
+ scene_manager = SceneManager(stats_manager)
89
+ # Add ContentDetector algorithm (constructor takes detector options like threshold).
90
+ scene_manager.add_detector(ContentDetector())
91
+ base_timecode = video_manager.get_base_timecode()
92
+
93
+ video_manager.set_downscale_factor()
94
+
95
+ video_manager.start()
96
+
97
+ scene_manager.detect_scenes(frame_source=video_manager)
98
+
99
+ scene_list = scene_manager.get_scene_list(base_timecode)
100
+
101
+ if scene_list == []:
102
+ scene_list = [(video_manager.get_base_timecode(), video_manager.get_current_timecode())]
103
+
104
+ return scene_list
105
+
106
+ def track_face(self, scenefaces, num_failed_det=25, min_track=50, min_face_size=100):
107
+
108
+ iouThres = 0.5 # Minimum IOU between consecutive face detections
109
+ tracks = []
110
+
111
+ while True:
112
+ track = []
113
+ for framefaces in scenefaces:
114
+ for face in framefaces:
115
+ if track == []:
116
+ track.append(face)
117
+ framefaces.remove(face)
118
+ elif face["frame"] - track[-1]["frame"] <= num_failed_det:
119
+ iou = bounding_box_iou(face["bbox"], track[-1]["bbox"])
120
+ if iou > iouThres:
121
+ track.append(face)
122
+ framefaces.remove(face)
123
+ continue
124
+ else:
125
+ break
126
+
127
+ if track == []:
128
+ break
129
+ elif len(track) > min_track:
130
+
131
+ framenum = np.array([f["frame"] for f in track])
132
+ bboxes = np.array([np.array(f["bbox"]) for f in track])
133
+
134
+ frame_i = np.arange(framenum[0], framenum[-1] + 1)
135
+
136
+ bboxes_i = []
137
+ for ij in range(0, 4):
138
+ interpfn = interp1d(framenum, bboxes[:, ij])
139
+ bboxes_i.append(interpfn(frame_i))
140
+ bboxes_i = np.stack(bboxes_i, axis=1)
141
+
142
+ if (
143
+ max(np.mean(bboxes_i[:, 2] - bboxes_i[:, 0]), np.mean(bboxes_i[:, 3] - bboxes_i[:, 1]))
144
+ > min_face_size
145
+ ):
146
+ tracks.append({"frame": frame_i, "bbox": bboxes_i})
147
+
148
+ return tracks
149
+
150
+ def detect_face(self, frames_dir, facedet_scale=0.25):
151
+ flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
152
+ flist.sort()
153
+
154
+ dets = []
155
+
156
+ for fidx, fname in enumerate(flist):
157
+ image = cv2.imread(fname)
158
+
159
+ image_np = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
160
+ bboxes = self.s3f_detector.detect_faces(image_np, conf_th=0.9, scales=[facedet_scale])
161
+
162
+ dets.append([])
163
+ for bbox in bboxes:
164
+ dets[-1].append({"frame": fidx, "bbox": (bbox[:-1]).tolist(), "conf": bbox[-1]})
165
+
166
+ return dets
167
+
168
+ def crop_video(self, track, cropfile, frames_dir, frame_rate, temp_dir, video_dir, crop_scale=0.4):
169
+
170
+ flist = glob.glob(os.path.join(frames_dir, "*.jpg"))
171
+ flist.sort()
172
+
173
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
174
+ vOut = cv2.VideoWriter(cropfile + "t.mp4", fourcc, frame_rate, (224, 224))
175
+
176
+ dets = {"x": [], "y": [], "s": []}
177
+
178
+ for det in track["bbox"]:
179
+
180
+ dets["s"].append(max((det[3] - det[1]), (det[2] - det[0])) / 2)
181
+ dets["y"].append((det[1] + det[3]) / 2) # crop center x
182
+ dets["x"].append((det[0] + det[2]) / 2) # crop center y
183
+
184
+ # Smooth detections
185
+ dets["s"] = signal.medfilt(dets["s"], kernel_size=13)
186
+ dets["x"] = signal.medfilt(dets["x"], kernel_size=13)
187
+ dets["y"] = signal.medfilt(dets["y"], kernel_size=13)
188
+
189
+ for fidx, frame in enumerate(track["frame"]):
190
+
191
+ cs = crop_scale
192
+
193
+ bs = dets["s"][fidx] # Detection box size
194
+ bsi = int(bs * (1 + 2 * cs)) # Pad videos by this amount
195
+
196
+ image = cv2.imread(flist[frame])
197
+
198
+ frame = np.pad(image, ((bsi, bsi), (bsi, bsi), (0, 0)), "constant", constant_values=(110, 110))
199
+ my = dets["y"][fidx] + bsi # BBox center Y
200
+ mx = dets["x"][fidx] + bsi # BBox center X
201
+
202
+ face = frame[int(my - bs) : int(my + bs * (1 + 2 * cs)), int(mx - bs * (1 + cs)) : int(mx + bs * (1 + cs))]
203
+
204
+ vOut.write(cv2.resize(face, (224, 224)))
205
+
206
+ audiotmp = os.path.join(temp_dir, "audio.wav")
207
+ audiostart = (track["frame"][0]) / frame_rate
208
+ audioend = (track["frame"][-1] + 1) / frame_rate
209
+
210
+ vOut.release()
211
+
212
+ # ========== CROP AUDIO FILE ==========
213
+
214
+ command = "ffmpeg -y -nostdin -loglevel error -i %s -ss %.3f -to %.3f %s" % (
215
+ os.path.join(video_dir, "audio.wav"),
216
+ audiostart,
217
+ audioend,
218
+ audiotmp,
219
+ )
220
+ output = subprocess.run(command, shell=True, stdout=None)
221
+
222
+ sample_rate, audio = wavfile.read(audiotmp)
223
+
224
+ # ========== COMBINE AUDIO AND VIDEO FILES ==========
225
+
226
+ command = "ffmpeg -y -nostdin -loglevel error -i %st.mp4 -i %s -c:v copy -c:a aac %s.mp4" % (
227
+ cropfile,
228
+ audiotmp,
229
+ cropfile,
230
+ )
231
+ output = subprocess.run(command, shell=True, stdout=None)
232
+
233
+ os.remove(cropfile + "t.mp4")
234
+
235
+ return {"track": track, "proc_track": dets}
236
+
237
+
238
+ def bounding_box_iou(boxA, boxB):
239
+ xA = max(boxA[0], boxB[0])
240
+ yA = max(boxA[1], boxB[1])
241
+ xB = min(boxA[2], boxB[2])
242
+ yB = min(boxA[3], boxB[3])
243
+
244
+ interArea = max(0, xB - xA) * max(0, yB - yA)
245
+
246
+ boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
247
+ boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
248
+
249
+ iou = interArea / float(boxAArea + boxBArea - interArea)
250
+
251
+ return iou
inference.sh ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python -m scripts.inference \
4
+ --unet_config_path "configs/unet/second_stage.yaml" \
5
+ --inference_ckpt_path "checkpoints/latentsync_unet.pt" \
6
+ --guidance_scale 1.0 \
7
+ --video_path "assets/demo1_video.mp4" \
8
+ --audio_path "assets/demo1_audio.wav" \
9
+ --video_out_path "video_out.mp4"
latentsync/data/syncnet_dataset.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import numpy as np
17
+ from torch.utils.data import Dataset
18
+ import torch
19
+ import random
20
+ from ..utils.util import gather_video_paths_recursively
21
+ from ..utils.image_processor import ImageProcessor
22
+ from ..utils.audio import melspectrogram
23
+ import math
24
+
25
+ from decord import AudioReader, VideoReader, cpu
26
+
27
+
28
+ class SyncNetDataset(Dataset):
29
+ def __init__(self, data_dir: str, fileslist: str, config):
30
+ if fileslist != "":
31
+ with open(fileslist) as file:
32
+ self.video_paths = [line.rstrip() for line in file]
33
+ elif data_dir != "":
34
+ self.video_paths = gather_video_paths_recursively(data_dir)
35
+ else:
36
+ raise ValueError("data_dir and fileslist cannot be both empty")
37
+
38
+ self.resolution = config.data.resolution
39
+ self.num_frames = config.data.num_frames
40
+
41
+ self.mel_window_length = math.ceil(self.num_frames / 5 * 16)
42
+
43
+ self.audio_sample_rate = config.data.audio_sample_rate
44
+ self.video_fps = config.data.video_fps
45
+ self.audio_samples_length = int(
46
+ config.data.audio_sample_rate // config.data.video_fps * config.data.num_frames
47
+ )
48
+ self.image_processor = ImageProcessor(resolution=config.data.resolution, mask="half")
49
+ self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
50
+ os.makedirs(self.audio_mel_cache_dir, exist_ok=True)
51
+
52
+ def __len__(self):
53
+ return len(self.video_paths)
54
+
55
+ def read_audio(self, video_path: str):
56
+ ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
57
+ original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
58
+ return torch.from_numpy(original_mel)
59
+
60
+ def crop_audio_window(self, original_mel, start_index):
61
+ start_idx = int(80.0 * (start_index / float(self.video_fps)))
62
+ end_idx = start_idx + self.mel_window_length
63
+ return original_mel[:, start_idx:end_idx].unsqueeze(0)
64
+
65
+ def get_frames(self, video_reader: VideoReader):
66
+ total_num_frames = len(video_reader)
67
+
68
+ start_idx = random.randint(0, total_num_frames - self.num_frames)
69
+ frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
70
+
71
+ while True:
72
+ wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
73
+ # wrong_start_idx = random.randint(
74
+ # max(0, start_idx - 25), min(total_num_frames - self.num_frames, start_idx + 25)
75
+ # )
76
+ if wrong_start_idx == start_idx:
77
+ continue
78
+ # if wrong_start_idx >= start_idx - self.num_frames and wrong_start_idx <= start_idx + self.num_frames:
79
+ # continue
80
+ wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
81
+ break
82
+
83
+ frames = video_reader.get_batch(frames_index).asnumpy()
84
+ wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
85
+
86
+ return frames, wrong_frames, start_idx
87
+
88
+ def worker_init_fn(self, worker_id):
89
+ # Initialize the face mesh object in each worker process,
90
+ # because the face mesh object cannot be called in subprocesses
91
+ self.worker_id = worker_id
92
+ # setattr(self, f"image_processor_{worker_id}", ImageProcessor(self.resolution, self.mask))
93
+
94
+ def __getitem__(self, idx):
95
+ # image_processor = getattr(self, f"image_processor_{self.worker_id}")
96
+ while True:
97
+ try:
98
+ idx = random.randint(0, len(self) - 1)
99
+
100
+ # Get video file path
101
+ video_path = self.video_paths[idx]
102
+
103
+ vr = VideoReader(video_path, ctx=cpu(self.worker_id))
104
+
105
+ if len(vr) < 2 * self.num_frames:
106
+ continue
107
+
108
+ frames, wrong_frames, start_idx = self.get_frames(vr)
109
+
110
+ mel_cache_path = os.path.join(
111
+ self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
112
+ )
113
+
114
+ if os.path.isfile(mel_cache_path):
115
+ try:
116
+ original_mel = torch.load(mel_cache_path)
117
+ except Exception as e:
118
+ print(f"{type(e).__name__} - {e} - {mel_cache_path}")
119
+ os.remove(mel_cache_path)
120
+ original_mel = self.read_audio(video_path)
121
+ torch.save(original_mel, mel_cache_path)
122
+ else:
123
+ original_mel = self.read_audio(video_path)
124
+ torch.save(original_mel, mel_cache_path)
125
+
126
+ mel = self.crop_audio_window(original_mel, start_idx)
127
+
128
+ if mel.shape[-1] != self.mel_window_length:
129
+ continue
130
+
131
+ if random.choice([True, False]):
132
+ y = torch.ones(1).float()
133
+ chosen_frames = frames
134
+ else:
135
+ y = torch.zeros(1).float()
136
+ chosen_frames = wrong_frames
137
+
138
+ chosen_frames = self.image_processor.process_images(chosen_frames)
139
+ # chosen_frames, _, _ = image_processor.prepare_masks_and_masked_images(
140
+ # chosen_frames, affine_transform=True
141
+ # )
142
+
143
+ vr.seek(0) # avoid memory leak
144
+ break
145
+
146
+ except Exception as e: # Handle the exception of face not detcted
147
+ print(f"{type(e).__name__} - {e} - {video_path}")
148
+ if "vr" in locals():
149
+ vr.seek(0) # avoid memory leak
150
+
151
+ sample = dict(frames=chosen_frames, audio_samples=mel, y=y)
152
+
153
+ return sample
latentsync/data/unet_dataset.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import numpy as np
17
+ from torch.utils.data import Dataset
18
+ import torch
19
+ import random
20
+ import cv2
21
+ from ..utils.image_processor import ImageProcessor, load_fixed_mask
22
+ from ..utils.audio import melspectrogram
23
+ from decord import AudioReader, VideoReader, cpu
24
+
25
+
26
+ class UNetDataset(Dataset):
27
+ def __init__(self, train_data_dir: str, config):
28
+ if config.data.train_fileslist != "":
29
+ with open(config.data.train_fileslist) as file:
30
+ self.video_paths = [line.rstrip() for line in file]
31
+ elif train_data_dir != "":
32
+ self.video_paths = []
33
+ for file in os.listdir(train_data_dir):
34
+ if file.endswith(".mp4"):
35
+ self.video_paths.append(os.path.join(train_data_dir, file))
36
+ else:
37
+ raise ValueError("data_dir and fileslist cannot be both empty")
38
+
39
+ self.resolution = config.data.resolution
40
+ self.num_frames = config.data.num_frames
41
+
42
+ if self.num_frames == 16:
43
+ self.mel_window_length = 52
44
+ elif self.num_frames == 5:
45
+ self.mel_window_length = 16
46
+ else:
47
+ raise NotImplementedError("Only support 16 and 5 frames now")
48
+
49
+ self.audio_sample_rate = config.data.audio_sample_rate
50
+ self.video_fps = config.data.video_fps
51
+ self.mask = config.data.mask
52
+ self.mask_image = load_fixed_mask(self.resolution)
53
+ self.load_audio_data = config.model.add_audio_layer and config.run.use_syncnet
54
+ self.audio_mel_cache_dir = config.data.audio_mel_cache_dir
55
+ os.makedirs(self.audio_mel_cache_dir, exist_ok=True)
56
+
57
+ def __len__(self):
58
+ return len(self.video_paths)
59
+
60
+ def read_audio(self, video_path: str):
61
+ ar = AudioReader(video_path, ctx=cpu(self.worker_id), sample_rate=self.audio_sample_rate)
62
+ original_mel = melspectrogram(ar[:].asnumpy().squeeze(0))
63
+ return torch.from_numpy(original_mel)
64
+
65
+ def crop_audio_window(self, original_mel, start_index):
66
+ start_idx = int(80.0 * (start_index / float(self.video_fps)))
67
+ end_idx = start_idx + self.mel_window_length
68
+ return original_mel[:, start_idx:end_idx].unsqueeze(0)
69
+
70
+ def get_frames(self, video_reader: VideoReader):
71
+ total_num_frames = len(video_reader)
72
+
73
+ start_idx = random.randint(self.num_frames // 2, total_num_frames - self.num_frames - self.num_frames // 2)
74
+ frames_index = np.arange(start_idx, start_idx + self.num_frames, dtype=int)
75
+
76
+ while True:
77
+ wrong_start_idx = random.randint(0, total_num_frames - self.num_frames)
78
+ if wrong_start_idx > start_idx - self.num_frames and wrong_start_idx < start_idx + self.num_frames:
79
+ continue
80
+ wrong_frames_index = np.arange(wrong_start_idx, wrong_start_idx + self.num_frames, dtype=int)
81
+ break
82
+
83
+ frames = video_reader.get_batch(frames_index).asnumpy()
84
+ wrong_frames = video_reader.get_batch(wrong_frames_index).asnumpy()
85
+
86
+ return frames, wrong_frames, start_idx
87
+
88
+ def worker_init_fn(self, worker_id):
89
+ # Initialize the face mesh object in each worker process,
90
+ # because the face mesh object cannot be called in subprocesses
91
+ self.worker_id = worker_id
92
+ setattr(
93
+ self,
94
+ f"image_processor_{worker_id}",
95
+ ImageProcessor(self.resolution, self.mask, mask_image=self.mask_image),
96
+ )
97
+
98
+ def __getitem__(self, idx):
99
+ image_processor = getattr(self, f"image_processor_{self.worker_id}")
100
+ while True:
101
+ try:
102
+ idx = random.randint(0, len(self) - 1)
103
+
104
+ # Get video file path
105
+ video_path = self.video_paths[idx]
106
+
107
+ vr = VideoReader(video_path, ctx=cpu(self.worker_id))
108
+
109
+ if len(vr) < 3 * self.num_frames:
110
+ continue
111
+
112
+ continuous_frames, ref_frames, start_idx = self.get_frames(vr)
113
+
114
+ if self.load_audio_data:
115
+ mel_cache_path = os.path.join(
116
+ self.audio_mel_cache_dir, os.path.basename(video_path).replace(".mp4", "_mel.pt")
117
+ )
118
+
119
+ if os.path.isfile(mel_cache_path):
120
+ try:
121
+ original_mel = torch.load(mel_cache_path)
122
+ except Exception as e:
123
+ print(f"{type(e).__name__} - {e} - {mel_cache_path}")
124
+ os.remove(mel_cache_path)
125
+ original_mel = self.read_audio(video_path)
126
+ torch.save(original_mel, mel_cache_path)
127
+ else:
128
+ original_mel = self.read_audio(video_path)
129
+ torch.save(original_mel, mel_cache_path)
130
+
131
+ mel = self.crop_audio_window(original_mel, start_idx)
132
+
133
+ if mel.shape[-1] != self.mel_window_length:
134
+ continue
135
+ else:
136
+ mel = []
137
+
138
+ gt, masked_gt, mask = image_processor.prepare_masks_and_masked_images(
139
+ continuous_frames, affine_transform=False
140
+ )
141
+
142
+ if self.mask == "fix_mask":
143
+ ref, _, _ = image_processor.prepare_masks_and_masked_images(ref_frames, affine_transform=False)
144
+ else:
145
+ ref = image_processor.process_images(ref_frames)
146
+ vr.seek(0) # avoid memory leak
147
+ break
148
+
149
+ except Exception as e: # Handle the exception of face not detcted
150
+ print(f"{type(e).__name__} - {e} - {video_path}")
151
+ if "vr" in locals():
152
+ vr.seek(0) # avoid memory leak
153
+
154
+ sample = dict(
155
+ gt=gt,
156
+ masked_gt=masked_gt,
157
+ ref=ref,
158
+ mel=mel,
159
+ mask=mask,
160
+ video_path=video_path,
161
+ start_idx=start_idx,
162
+ )
163
+
164
+ return sample
latentsync/models/attention.py ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
2
+
3
+ from dataclasses import dataclass
4
+ from turtle import forward
5
+ from typing import Optional
6
+
7
+ import torch
8
+ import torch.nn.functional as F
9
+ from torch import nn
10
+
11
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
12
+ from diffusers.modeling_utils import ModelMixin
13
+ from diffusers.utils import BaseOutput
14
+ from diffusers.utils.import_utils import is_xformers_available
15
+ from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
16
+
17
+ from einops import rearrange, repeat
18
+ from .utils import zero_module
19
+
20
+
21
+ @dataclass
22
+ class Transformer3DModelOutput(BaseOutput):
23
+ sample: torch.FloatTensor
24
+
25
+
26
+ if is_xformers_available():
27
+ import xformers
28
+ import xformers.ops
29
+ else:
30
+ xformers = None
31
+
32
+
33
+ class Transformer3DModel(ModelMixin, ConfigMixin):
34
+ @register_to_config
35
+ def __init__(
36
+ self,
37
+ num_attention_heads: int = 16,
38
+ attention_head_dim: int = 88,
39
+ in_channels: Optional[int] = None,
40
+ num_layers: int = 1,
41
+ dropout: float = 0.0,
42
+ norm_num_groups: int = 32,
43
+ cross_attention_dim: Optional[int] = None,
44
+ attention_bias: bool = False,
45
+ activation_fn: str = "geglu",
46
+ num_embeds_ada_norm: Optional[int] = None,
47
+ use_linear_projection: bool = False,
48
+ only_cross_attention: bool = False,
49
+ upcast_attention: bool = False,
50
+ use_motion_module: bool = False,
51
+ unet_use_cross_frame_attention=None,
52
+ unet_use_temporal_attention=None,
53
+ add_audio_layer=False,
54
+ audio_condition_method="cross_attn",
55
+ custom_audio_layer: bool = False,
56
+ ):
57
+ super().__init__()
58
+ self.use_linear_projection = use_linear_projection
59
+ self.num_attention_heads = num_attention_heads
60
+ self.attention_head_dim = attention_head_dim
61
+ inner_dim = num_attention_heads * attention_head_dim
62
+
63
+ # Define input layers
64
+ self.in_channels = in_channels
65
+
66
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
67
+ if use_linear_projection:
68
+ self.proj_in = nn.Linear(in_channels, inner_dim)
69
+ else:
70
+ self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
71
+
72
+ if not custom_audio_layer:
73
+ # Define transformers blocks
74
+ self.transformer_blocks = nn.ModuleList(
75
+ [
76
+ BasicTransformerBlock(
77
+ inner_dim,
78
+ num_attention_heads,
79
+ attention_head_dim,
80
+ dropout=dropout,
81
+ cross_attention_dim=cross_attention_dim,
82
+ activation_fn=activation_fn,
83
+ num_embeds_ada_norm=num_embeds_ada_norm,
84
+ attention_bias=attention_bias,
85
+ only_cross_attention=only_cross_attention,
86
+ upcast_attention=upcast_attention,
87
+ use_motion_module=use_motion_module,
88
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
89
+ unet_use_temporal_attention=unet_use_temporal_attention,
90
+ add_audio_layer=add_audio_layer,
91
+ custom_audio_layer=custom_audio_layer,
92
+ audio_condition_method=audio_condition_method,
93
+ )
94
+ for d in range(num_layers)
95
+ ]
96
+ )
97
+ else:
98
+ self.transformer_blocks = nn.ModuleList(
99
+ [
100
+ AudioTransformerBlock(
101
+ inner_dim,
102
+ num_attention_heads,
103
+ attention_head_dim,
104
+ dropout=dropout,
105
+ cross_attention_dim=cross_attention_dim,
106
+ activation_fn=activation_fn,
107
+ num_embeds_ada_norm=num_embeds_ada_norm,
108
+ attention_bias=attention_bias,
109
+ only_cross_attention=only_cross_attention,
110
+ upcast_attention=upcast_attention,
111
+ use_motion_module=use_motion_module,
112
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
113
+ unet_use_temporal_attention=unet_use_temporal_attention,
114
+ add_audio_layer=add_audio_layer,
115
+ )
116
+ for d in range(num_layers)
117
+ ]
118
+ )
119
+
120
+ # 4. Define output layers
121
+ if use_linear_projection:
122
+ self.proj_out = nn.Linear(in_channels, inner_dim)
123
+ else:
124
+ self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
125
+
126
+ if custom_audio_layer:
127
+ self.proj_out = zero_module(self.proj_out)
128
+
129
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
130
+ # Input
131
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
132
+ video_length = hidden_states.shape[2]
133
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
134
+
135
+ # No need to do this for audio input, because different audio samples are independent
136
+ # encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
137
+
138
+ batch, channel, height, weight = hidden_states.shape
139
+ residual = hidden_states
140
+
141
+ hidden_states = self.norm(hidden_states)
142
+ if not self.use_linear_projection:
143
+ hidden_states = self.proj_in(hidden_states)
144
+ inner_dim = hidden_states.shape[1]
145
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
146
+ else:
147
+ inner_dim = hidden_states.shape[1]
148
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
149
+ hidden_states = self.proj_in(hidden_states)
150
+
151
+ # Blocks
152
+ for block in self.transformer_blocks:
153
+ hidden_states = block(
154
+ hidden_states,
155
+ encoder_hidden_states=encoder_hidden_states,
156
+ timestep=timestep,
157
+ video_length=video_length,
158
+ )
159
+
160
+ # Output
161
+ if not self.use_linear_projection:
162
+ hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
163
+ hidden_states = self.proj_out(hidden_states)
164
+ else:
165
+ hidden_states = self.proj_out(hidden_states)
166
+ hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
167
+
168
+ output = hidden_states + residual
169
+
170
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
171
+ if not return_dict:
172
+ return (output,)
173
+
174
+ return Transformer3DModelOutput(sample=output)
175
+
176
+
177
+ class BasicTransformerBlock(nn.Module):
178
+ def __init__(
179
+ self,
180
+ dim: int,
181
+ num_attention_heads: int,
182
+ attention_head_dim: int,
183
+ dropout=0.0,
184
+ cross_attention_dim: Optional[int] = None,
185
+ activation_fn: str = "geglu",
186
+ num_embeds_ada_norm: Optional[int] = None,
187
+ attention_bias: bool = False,
188
+ only_cross_attention: bool = False,
189
+ upcast_attention: bool = False,
190
+ use_motion_module: bool = False,
191
+ unet_use_cross_frame_attention=None,
192
+ unet_use_temporal_attention=None,
193
+ add_audio_layer=False,
194
+ custom_audio_layer=False,
195
+ audio_condition_method="cross_attn",
196
+ ):
197
+ super().__init__()
198
+ self.only_cross_attention = only_cross_attention
199
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
200
+ self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
201
+ self.unet_use_temporal_attention = unet_use_temporal_attention
202
+ self.use_motion_module = use_motion_module
203
+ self.add_audio_layer = add_audio_layer
204
+
205
+ # SC-Attn
206
+ assert unet_use_cross_frame_attention is not None
207
+ if unet_use_cross_frame_attention:
208
+ raise NotImplementedError("SparseCausalAttention2D not implemented yet.")
209
+ else:
210
+ self.attn1 = CrossAttention(
211
+ query_dim=dim,
212
+ heads=num_attention_heads,
213
+ dim_head=attention_head_dim,
214
+ dropout=dropout,
215
+ bias=attention_bias,
216
+ upcast_attention=upcast_attention,
217
+ )
218
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
219
+
220
+ # Cross-Attn
221
+ if add_audio_layer and audio_condition_method == "cross_attn" and not custom_audio_layer:
222
+ self.audio_cross_attn = AudioCrossAttn(
223
+ dim=dim,
224
+ cross_attention_dim=cross_attention_dim,
225
+ num_attention_heads=num_attention_heads,
226
+ attention_head_dim=attention_head_dim,
227
+ dropout=dropout,
228
+ attention_bias=attention_bias,
229
+ upcast_attention=upcast_attention,
230
+ num_embeds_ada_norm=num_embeds_ada_norm,
231
+ use_ada_layer_norm=self.use_ada_layer_norm,
232
+ zero_proj_out=False,
233
+ )
234
+ else:
235
+ self.audio_cross_attn = None
236
+
237
+ # Feed-forward
238
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
239
+ self.norm3 = nn.LayerNorm(dim)
240
+
241
+ # Temp-Attn
242
+ assert unet_use_temporal_attention is not None
243
+ if unet_use_temporal_attention:
244
+ self.attn_temp = CrossAttention(
245
+ query_dim=dim,
246
+ heads=num_attention_heads,
247
+ dim_head=attention_head_dim,
248
+ dropout=dropout,
249
+ bias=attention_bias,
250
+ upcast_attention=upcast_attention,
251
+ )
252
+ nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
253
+ self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
254
+
255
+ def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
256
+ if not is_xformers_available():
257
+ print("Here is how to install it")
258
+ raise ModuleNotFoundError(
259
+ "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
260
+ " xformers",
261
+ name="xformers",
262
+ )
263
+ elif not torch.cuda.is_available():
264
+ raise ValueError(
265
+ "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
266
+ " available for GPU "
267
+ )
268
+ else:
269
+ try:
270
+ # Make sure we can run the memory efficient attention
271
+ _ = xformers.ops.memory_efficient_attention(
272
+ torch.randn((1, 2, 40), device="cuda"),
273
+ torch.randn((1, 2, 40), device="cuda"),
274
+ torch.randn((1, 2, 40), device="cuda"),
275
+ )
276
+ except Exception as e:
277
+ raise e
278
+ self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
279
+ if self.audio_cross_attn is not None:
280
+ self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = (
281
+ use_memory_efficient_attention_xformers
282
+ )
283
+ # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
284
+
285
+ def forward(
286
+ self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
287
+ ):
288
+ # SparseCausal-Attention
289
+ norm_hidden_states = (
290
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
291
+ )
292
+
293
+ # if self.only_cross_attention:
294
+ # hidden_states = (
295
+ # self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
296
+ # )
297
+ # else:
298
+ # hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
299
+
300
+ # pdb.set_trace()
301
+ if self.unet_use_cross_frame_attention:
302
+ hidden_states = (
303
+ self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
304
+ + hidden_states
305
+ )
306
+ else:
307
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
308
+
309
+ if self.audio_cross_attn is not None and encoder_hidden_states is not None:
310
+ hidden_states = self.audio_cross_attn(
311
+ hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
312
+ )
313
+
314
+ # Feed-forward
315
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
316
+
317
+ # Temporal-Attention
318
+ if self.unet_use_temporal_attention:
319
+ d = hidden_states.shape[1]
320
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
321
+ norm_hidden_states = (
322
+ self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
323
+ )
324
+ hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
325
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
326
+
327
+ return hidden_states
328
+
329
+
330
+ class AudioTransformerBlock(nn.Module):
331
+ def __init__(
332
+ self,
333
+ dim: int,
334
+ num_attention_heads: int,
335
+ attention_head_dim: int,
336
+ dropout=0.0,
337
+ cross_attention_dim: Optional[int] = None,
338
+ activation_fn: str = "geglu",
339
+ num_embeds_ada_norm: Optional[int] = None,
340
+ attention_bias: bool = False,
341
+ only_cross_attention: bool = False,
342
+ upcast_attention: bool = False,
343
+ use_motion_module: bool = False,
344
+ unet_use_cross_frame_attention=None,
345
+ unet_use_temporal_attention=None,
346
+ add_audio_layer=False,
347
+ ):
348
+ super().__init__()
349
+ self.only_cross_attention = only_cross_attention
350
+ self.use_ada_layer_norm = num_embeds_ada_norm is not None
351
+ self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
352
+ self.unet_use_temporal_attention = unet_use_temporal_attention
353
+ self.use_motion_module = use_motion_module
354
+ self.add_audio_layer = add_audio_layer
355
+
356
+ # SC-Attn
357
+ assert unet_use_cross_frame_attention is not None
358
+ if unet_use_cross_frame_attention:
359
+ raise NotImplementedError("SparseCausalAttention2D not implemented yet.")
360
+ else:
361
+ self.attn1 = CrossAttention(
362
+ query_dim=dim,
363
+ heads=num_attention_heads,
364
+ dim_head=attention_head_dim,
365
+ dropout=dropout,
366
+ bias=attention_bias,
367
+ upcast_attention=upcast_attention,
368
+ )
369
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
370
+
371
+ self.audio_cross_attn = AudioCrossAttn(
372
+ dim=dim,
373
+ cross_attention_dim=cross_attention_dim,
374
+ num_attention_heads=num_attention_heads,
375
+ attention_head_dim=attention_head_dim,
376
+ dropout=dropout,
377
+ attention_bias=attention_bias,
378
+ upcast_attention=upcast_attention,
379
+ num_embeds_ada_norm=num_embeds_ada_norm,
380
+ use_ada_layer_norm=self.use_ada_layer_norm,
381
+ zero_proj_out=False,
382
+ )
383
+
384
+ # Feed-forward
385
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
386
+ self.norm3 = nn.LayerNorm(dim)
387
+
388
+ def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
389
+ if not is_xformers_available():
390
+ print("Here is how to install it")
391
+ raise ModuleNotFoundError(
392
+ "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
393
+ " xformers",
394
+ name="xformers",
395
+ )
396
+ elif not torch.cuda.is_available():
397
+ raise ValueError(
398
+ "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
399
+ " available for GPU "
400
+ )
401
+ else:
402
+ try:
403
+ # Make sure we can run the memory efficient attention
404
+ _ = xformers.ops.memory_efficient_attention(
405
+ torch.randn((1, 2, 40), device="cuda"),
406
+ torch.randn((1, 2, 40), device="cuda"),
407
+ torch.randn((1, 2, 40), device="cuda"),
408
+ )
409
+ except Exception as e:
410
+ raise e
411
+ self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
412
+ if self.audio_cross_attn is not None:
413
+ self.audio_cross_attn.attn._use_memory_efficient_attention_xformers = (
414
+ use_memory_efficient_attention_xformers
415
+ )
416
+ # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
417
+
418
+ def forward(
419
+ self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None
420
+ ):
421
+ # SparseCausal-Attention
422
+ norm_hidden_states = (
423
+ self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
424
+ )
425
+
426
+ # pdb.set_trace()
427
+ if self.unet_use_cross_frame_attention:
428
+ hidden_states = (
429
+ self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length)
430
+ + hidden_states
431
+ )
432
+ else:
433
+ hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
434
+
435
+ if self.audio_cross_attn is not None and encoder_hidden_states is not None:
436
+ hidden_states = self.audio_cross_attn(
437
+ hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
438
+ )
439
+
440
+ # Feed-forward
441
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
442
+
443
+ return hidden_states
444
+
445
+
446
+ class AudioCrossAttn(nn.Module):
447
+ def __init__(
448
+ self,
449
+ dim,
450
+ cross_attention_dim,
451
+ num_attention_heads,
452
+ attention_head_dim,
453
+ dropout,
454
+ attention_bias,
455
+ upcast_attention,
456
+ num_embeds_ada_norm,
457
+ use_ada_layer_norm,
458
+ zero_proj_out=False,
459
+ ):
460
+ super().__init__()
461
+
462
+ self.norm = AdaLayerNorm(dim, num_embeds_ada_norm) if use_ada_layer_norm else nn.LayerNorm(dim)
463
+ self.attn = CrossAttention(
464
+ query_dim=dim,
465
+ cross_attention_dim=cross_attention_dim,
466
+ heads=num_attention_heads,
467
+ dim_head=attention_head_dim,
468
+ dropout=dropout,
469
+ bias=attention_bias,
470
+ upcast_attention=upcast_attention,
471
+ )
472
+
473
+ if zero_proj_out:
474
+ self.proj_out = zero_module(nn.Linear(dim, dim))
475
+
476
+ self.zero_proj_out = zero_proj_out
477
+ self.use_ada_layer_norm = use_ada_layer_norm
478
+
479
+ def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None):
480
+ previous_hidden_states = hidden_states
481
+ hidden_states = self.norm(hidden_states, timestep) if self.use_ada_layer_norm else self.norm(hidden_states)
482
+
483
+ if encoder_hidden_states.dim() == 4:
484
+ encoder_hidden_states = rearrange(encoder_hidden_states, "b f n d -> (b f) n d")
485
+
486
+ hidden_states = self.attn(
487
+ hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
488
+ )
489
+
490
+ if self.zero_proj_out:
491
+ hidden_states = self.proj_out(hidden_states)
492
+ return hidden_states + previous_hidden_states
latentsync/models/motion_module.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
2
+
3
+ # Actually we don't use the motion module in the final version of LatentSync
4
+ # When we started the project, we used the codebase of AnimateDiff and tried motion module
5
+ # But the results are poor, and we decied to leave the code here for possible future usage
6
+
7
+ from dataclasses import dataclass
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from torch import nn
12
+
13
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
14
+ from diffusers.modeling_utils import ModelMixin
15
+ from diffusers.utils import BaseOutput
16
+ from diffusers.utils.import_utils import is_xformers_available
17
+ from diffusers.models.attention import CrossAttention, FeedForward
18
+
19
+ from einops import rearrange, repeat
20
+ import math
21
+ from .utils import zero_module
22
+
23
+
24
+ @dataclass
25
+ class TemporalTransformer3DModelOutput(BaseOutput):
26
+ sample: torch.FloatTensor
27
+
28
+
29
+ if is_xformers_available():
30
+ import xformers
31
+ import xformers.ops
32
+ else:
33
+ xformers = None
34
+
35
+
36
+ def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
37
+ if motion_module_type == "Vanilla":
38
+ return VanillaTemporalModule(
39
+ in_channels=in_channels,
40
+ **motion_module_kwargs,
41
+ )
42
+ else:
43
+ raise ValueError
44
+
45
+
46
+ class VanillaTemporalModule(nn.Module):
47
+ def __init__(
48
+ self,
49
+ in_channels,
50
+ num_attention_heads=8,
51
+ num_transformer_block=2,
52
+ attention_block_types=("Temporal_Self", "Temporal_Self"),
53
+ cross_frame_attention_mode=None,
54
+ temporal_position_encoding=False,
55
+ temporal_position_encoding_max_len=24,
56
+ temporal_attention_dim_div=1,
57
+ zero_initialize=True,
58
+ ):
59
+ super().__init__()
60
+
61
+ self.temporal_transformer = TemporalTransformer3DModel(
62
+ in_channels=in_channels,
63
+ num_attention_heads=num_attention_heads,
64
+ attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
65
+ num_layers=num_transformer_block,
66
+ attention_block_types=attention_block_types,
67
+ cross_frame_attention_mode=cross_frame_attention_mode,
68
+ temporal_position_encoding=temporal_position_encoding,
69
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
70
+ )
71
+
72
+ if zero_initialize:
73
+ self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
74
+
75
+ def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None):
76
+ hidden_states = input_tensor
77
+ hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
78
+
79
+ output = hidden_states
80
+ return output
81
+
82
+
83
+ class TemporalTransformer3DModel(nn.Module):
84
+ def __init__(
85
+ self,
86
+ in_channels,
87
+ num_attention_heads,
88
+ attention_head_dim,
89
+ num_layers,
90
+ attention_block_types=(
91
+ "Temporal_Self",
92
+ "Temporal_Self",
93
+ ),
94
+ dropout=0.0,
95
+ norm_num_groups=32,
96
+ cross_attention_dim=768,
97
+ activation_fn="geglu",
98
+ attention_bias=False,
99
+ upcast_attention=False,
100
+ cross_frame_attention_mode=None,
101
+ temporal_position_encoding=False,
102
+ temporal_position_encoding_max_len=24,
103
+ ):
104
+ super().__init__()
105
+
106
+ inner_dim = num_attention_heads * attention_head_dim
107
+
108
+ self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
109
+ self.proj_in = nn.Linear(in_channels, inner_dim)
110
+
111
+ self.transformer_blocks = nn.ModuleList(
112
+ [
113
+ TemporalTransformerBlock(
114
+ dim=inner_dim,
115
+ num_attention_heads=num_attention_heads,
116
+ attention_head_dim=attention_head_dim,
117
+ attention_block_types=attention_block_types,
118
+ dropout=dropout,
119
+ norm_num_groups=norm_num_groups,
120
+ cross_attention_dim=cross_attention_dim,
121
+ activation_fn=activation_fn,
122
+ attention_bias=attention_bias,
123
+ upcast_attention=upcast_attention,
124
+ cross_frame_attention_mode=cross_frame_attention_mode,
125
+ temporal_position_encoding=temporal_position_encoding,
126
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
127
+ )
128
+ for d in range(num_layers)
129
+ ]
130
+ )
131
+ self.proj_out = nn.Linear(inner_dim, in_channels)
132
+
133
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
134
+ assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
135
+ video_length = hidden_states.shape[2]
136
+ hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
137
+
138
+ batch, channel, height, weight = hidden_states.shape
139
+ residual = hidden_states
140
+
141
+ hidden_states = self.norm(hidden_states)
142
+ hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, channel)
143
+ hidden_states = self.proj_in(hidden_states)
144
+
145
+ # Transformer Blocks
146
+ for block in self.transformer_blocks:
147
+ hidden_states = block(
148
+ hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length
149
+ )
150
+
151
+ # output
152
+ hidden_states = self.proj_out(hidden_states)
153
+ hidden_states = hidden_states.reshape(batch, height, weight, channel).permute(0, 3, 1, 2).contiguous()
154
+
155
+ output = hidden_states + residual
156
+ output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
157
+
158
+ return output
159
+
160
+
161
+ class TemporalTransformerBlock(nn.Module):
162
+ def __init__(
163
+ self,
164
+ dim,
165
+ num_attention_heads,
166
+ attention_head_dim,
167
+ attention_block_types=(
168
+ "Temporal_Self",
169
+ "Temporal_Self",
170
+ ),
171
+ dropout=0.0,
172
+ norm_num_groups=32,
173
+ cross_attention_dim=768,
174
+ activation_fn="geglu",
175
+ attention_bias=False,
176
+ upcast_attention=False,
177
+ cross_frame_attention_mode=None,
178
+ temporal_position_encoding=False,
179
+ temporal_position_encoding_max_len=24,
180
+ ):
181
+ super().__init__()
182
+
183
+ attention_blocks = []
184
+ norms = []
185
+
186
+ for block_name in attention_block_types:
187
+ attention_blocks.append(
188
+ VersatileAttention(
189
+ attention_mode=block_name.split("_")[0],
190
+ cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
191
+ query_dim=dim,
192
+ heads=num_attention_heads,
193
+ dim_head=attention_head_dim,
194
+ dropout=dropout,
195
+ bias=attention_bias,
196
+ upcast_attention=upcast_attention,
197
+ cross_frame_attention_mode=cross_frame_attention_mode,
198
+ temporal_position_encoding=temporal_position_encoding,
199
+ temporal_position_encoding_max_len=temporal_position_encoding_max_len,
200
+ )
201
+ )
202
+ norms.append(nn.LayerNorm(dim))
203
+
204
+ self.attention_blocks = nn.ModuleList(attention_blocks)
205
+ self.norms = nn.ModuleList(norms)
206
+
207
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
208
+ self.ff_norm = nn.LayerNorm(dim)
209
+
210
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
211
+ for attention_block, norm in zip(self.attention_blocks, self.norms):
212
+ norm_hidden_states = norm(hidden_states)
213
+ hidden_states = (
214
+ attention_block(
215
+ norm_hidden_states,
216
+ encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
217
+ video_length=video_length,
218
+ )
219
+ + hidden_states
220
+ )
221
+
222
+ hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
223
+
224
+ output = hidden_states
225
+ return output
226
+
227
+
228
+ class PositionalEncoding(nn.Module):
229
+ def __init__(self, d_model, dropout=0.0, max_len=24):
230
+ super().__init__()
231
+ self.dropout = nn.Dropout(p=dropout)
232
+ position = torch.arange(max_len).unsqueeze(1)
233
+ div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
234
+ pe = torch.zeros(1, max_len, d_model)
235
+ pe[0, :, 0::2] = torch.sin(position * div_term)
236
+ pe[0, :, 1::2] = torch.cos(position * div_term)
237
+ self.register_buffer("pe", pe)
238
+
239
+ def forward(self, x):
240
+ x = x + self.pe[:, : x.size(1)]
241
+ return self.dropout(x)
242
+
243
+
244
+ class VersatileAttention(CrossAttention):
245
+ def __init__(
246
+ self,
247
+ attention_mode=None,
248
+ cross_frame_attention_mode=None,
249
+ temporal_position_encoding=False,
250
+ temporal_position_encoding_max_len=24,
251
+ *args,
252
+ **kwargs,
253
+ ):
254
+ super().__init__(*args, **kwargs)
255
+ assert attention_mode == "Temporal"
256
+
257
+ self.attention_mode = attention_mode
258
+ self.is_cross_attention = kwargs["cross_attention_dim"] is not None
259
+
260
+ self.pos_encoder = (
261
+ PositionalEncoding(kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len)
262
+ if (temporal_position_encoding and attention_mode == "Temporal")
263
+ else None
264
+ )
265
+
266
+ def extra_repr(self):
267
+ return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
268
+
269
+ def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
270
+ batch_size, sequence_length, _ = hidden_states.shape
271
+
272
+ if self.attention_mode == "Temporal":
273
+ d = hidden_states.shape[1]
274
+ hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
275
+
276
+ if self.pos_encoder is not None:
277
+ hidden_states = self.pos_encoder(hidden_states)
278
+
279
+ encoder_hidden_states = (
280
+ repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
281
+ if encoder_hidden_states is not None
282
+ else encoder_hidden_states
283
+ )
284
+ else:
285
+ raise NotImplementedError
286
+
287
+ # encoder_hidden_states = encoder_hidden_states
288
+
289
+ if self.group_norm is not None:
290
+ hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
291
+
292
+ query = self.to_q(hidden_states)
293
+ dim = query.shape[-1]
294
+ query = self.reshape_heads_to_batch_dim(query)
295
+
296
+ if self.added_kv_proj_dim is not None:
297
+ raise NotImplementedError
298
+
299
+ encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
300
+ key = self.to_k(encoder_hidden_states)
301
+ value = self.to_v(encoder_hidden_states)
302
+
303
+ key = self.reshape_heads_to_batch_dim(key)
304
+ value = self.reshape_heads_to_batch_dim(value)
305
+
306
+ if attention_mask is not None:
307
+ if attention_mask.shape[-1] != query.shape[1]:
308
+ target_length = query.shape[1]
309
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
310
+ attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
311
+
312
+ # attention, what we cannot get enough of
313
+ if self._use_memory_efficient_attention_xformers:
314
+ hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
315
+ # Some versions of xformers return output in fp32, cast it back to the dtype of the input
316
+ hidden_states = hidden_states.to(query.dtype)
317
+ else:
318
+ if self._slice_size is None or query.shape[0] // self._slice_size == 1:
319
+ hidden_states = self._attention(query, key, value, attention_mask)
320
+ else:
321
+ hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
322
+
323
+ # linear proj
324
+ hidden_states = self.to_out[0](hidden_states)
325
+
326
+ # dropout
327
+ hidden_states = self.to_out[1](hidden_states)
328
+
329
+ if self.attention_mode == "Temporal":
330
+ hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
331
+
332
+ return hidden_states
latentsync/models/resnet.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+
7
+ from einops import rearrange
8
+
9
+
10
+ class InflatedConv3d(nn.Conv2d):
11
+ def forward(self, x):
12
+ video_length = x.shape[2]
13
+
14
+ x = rearrange(x, "b c f h w -> (b f) c h w")
15
+ x = super().forward(x)
16
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
17
+
18
+ return x
19
+
20
+
21
+ class InflatedGroupNorm(nn.GroupNorm):
22
+ def forward(self, x):
23
+ video_length = x.shape[2]
24
+
25
+ x = rearrange(x, "b c f h w -> (b f) c h w")
26
+ x = super().forward(x)
27
+ x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
28
+
29
+ return x
30
+
31
+
32
+ class Upsample3D(nn.Module):
33
+ def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
34
+ super().__init__()
35
+ self.channels = channels
36
+ self.out_channels = out_channels or channels
37
+ self.use_conv = use_conv
38
+ self.use_conv_transpose = use_conv_transpose
39
+ self.name = name
40
+
41
+ conv = None
42
+ if use_conv_transpose:
43
+ raise NotImplementedError
44
+ elif use_conv:
45
+ self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
46
+
47
+ def forward(self, hidden_states, output_size=None):
48
+ assert hidden_states.shape[1] == self.channels
49
+
50
+ if self.use_conv_transpose:
51
+ raise NotImplementedError
52
+
53
+ # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
54
+ dtype = hidden_states.dtype
55
+ if dtype == torch.bfloat16:
56
+ hidden_states = hidden_states.to(torch.float32)
57
+
58
+ # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
59
+ if hidden_states.shape[0] >= 64:
60
+ hidden_states = hidden_states.contiguous()
61
+
62
+ # if `output_size` is passed we force the interpolation output
63
+ # size and do not make use of `scale_factor=2`
64
+ if output_size is None:
65
+ hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
66
+ else:
67
+ hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
68
+
69
+ # If the input is bfloat16, we cast back to bfloat16
70
+ if dtype == torch.bfloat16:
71
+ hidden_states = hidden_states.to(dtype)
72
+
73
+ # if self.use_conv:
74
+ # if self.name == "conv":
75
+ # hidden_states = self.conv(hidden_states)
76
+ # else:
77
+ # hidden_states = self.Conv2d_0(hidden_states)
78
+ hidden_states = self.conv(hidden_states)
79
+
80
+ return hidden_states
81
+
82
+
83
+ class Downsample3D(nn.Module):
84
+ def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
85
+ super().__init__()
86
+ self.channels = channels
87
+ self.out_channels = out_channels or channels
88
+ self.use_conv = use_conv
89
+ self.padding = padding
90
+ stride = 2
91
+ self.name = name
92
+
93
+ if use_conv:
94
+ self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
95
+ else:
96
+ raise NotImplementedError
97
+
98
+ def forward(self, hidden_states):
99
+ assert hidden_states.shape[1] == self.channels
100
+ if self.use_conv and self.padding == 0:
101
+ raise NotImplementedError
102
+
103
+ assert hidden_states.shape[1] == self.channels
104
+ hidden_states = self.conv(hidden_states)
105
+
106
+ return hidden_states
107
+
108
+
109
+ class ResnetBlock3D(nn.Module):
110
+ def __init__(
111
+ self,
112
+ *,
113
+ in_channels,
114
+ out_channels=None,
115
+ conv_shortcut=False,
116
+ dropout=0.0,
117
+ temb_channels=512,
118
+ groups=32,
119
+ groups_out=None,
120
+ pre_norm=True,
121
+ eps=1e-6,
122
+ non_linearity="swish",
123
+ time_embedding_norm="default",
124
+ output_scale_factor=1.0,
125
+ use_in_shortcut=None,
126
+ use_inflated_groupnorm=False,
127
+ ):
128
+ super().__init__()
129
+ self.pre_norm = pre_norm
130
+ self.pre_norm = True
131
+ self.in_channels = in_channels
132
+ out_channels = in_channels if out_channels is None else out_channels
133
+ self.out_channels = out_channels
134
+ self.use_conv_shortcut = conv_shortcut
135
+ self.time_embedding_norm = time_embedding_norm
136
+ self.output_scale_factor = output_scale_factor
137
+
138
+ if groups_out is None:
139
+ groups_out = groups
140
+
141
+ assert use_inflated_groupnorm != None
142
+ if use_inflated_groupnorm:
143
+ self.norm1 = InflatedGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
144
+ else:
145
+ self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
146
+
147
+ self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
148
+
149
+ if temb_channels is not None:
150
+ time_emb_proj_out_channels = out_channels
151
+ # if self.time_embedding_norm == "default":
152
+ # time_emb_proj_out_channels = out_channels
153
+ # elif self.time_embedding_norm == "scale_shift":
154
+ # time_emb_proj_out_channels = out_channels * 2
155
+ # else:
156
+ # raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
157
+
158
+ self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
159
+ else:
160
+ self.time_emb_proj = None
161
+
162
+ if self.time_embedding_norm == "scale_shift":
163
+ self.double_len_linear = torch.nn.Linear(time_emb_proj_out_channels, 2 * time_emb_proj_out_channels)
164
+ else:
165
+ self.double_len_linear = None
166
+
167
+ if use_inflated_groupnorm:
168
+ self.norm2 = InflatedGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
169
+ else:
170
+ self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
171
+
172
+ self.dropout = torch.nn.Dropout(dropout)
173
+ self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
174
+
175
+ if non_linearity == "swish":
176
+ self.nonlinearity = lambda x: F.silu(x)
177
+ elif non_linearity == "mish":
178
+ self.nonlinearity = Mish()
179
+ elif non_linearity == "silu":
180
+ self.nonlinearity = nn.SiLU()
181
+
182
+ self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
183
+
184
+ self.conv_shortcut = None
185
+ if self.use_in_shortcut:
186
+ self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
187
+
188
+ def forward(self, input_tensor, temb):
189
+ hidden_states = input_tensor
190
+
191
+ hidden_states = self.norm1(hidden_states)
192
+ hidden_states = self.nonlinearity(hidden_states)
193
+
194
+ hidden_states = self.conv1(hidden_states)
195
+
196
+ if temb is not None:
197
+ if temb.dim() == 2:
198
+ # input (1, 1280)
199
+ temb = self.time_emb_proj(self.nonlinearity(temb))
200
+ temb = temb[:, :, None, None, None] # unsqueeze
201
+ else:
202
+ # input (1, 1280, 16)
203
+ temb = temb.permute(0, 2, 1)
204
+ temb = self.time_emb_proj(self.nonlinearity(temb))
205
+ if self.double_len_linear is not None:
206
+ temb = self.double_len_linear(self.nonlinearity(temb))
207
+ temb = temb.permute(0, 2, 1)
208
+ temb = temb[:, :, :, None, None]
209
+
210
+ if temb is not None and self.time_embedding_norm == "default":
211
+ hidden_states = hidden_states + temb
212
+
213
+ hidden_states = self.norm2(hidden_states)
214
+
215
+ if temb is not None and self.time_embedding_norm == "scale_shift":
216
+ scale, shift = torch.chunk(temb, 2, dim=1)
217
+ hidden_states = hidden_states * (1 + scale) + shift
218
+
219
+ hidden_states = self.nonlinearity(hidden_states)
220
+
221
+ hidden_states = self.dropout(hidden_states)
222
+ hidden_states = self.conv2(hidden_states)
223
+
224
+ if self.conv_shortcut is not None:
225
+ input_tensor = self.conv_shortcut(input_tensor)
226
+
227
+ output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
228
+
229
+ return output_tensor
230
+
231
+
232
+ class Mish(torch.nn.Module):
233
+ def forward(self, hidden_states):
234
+ return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
latentsync/models/syncnet.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ from torch import nn
17
+ from einops import rearrange
18
+ from torch.nn import functional as F
19
+ from ..utils.util import cosine_loss
20
+
21
+ import torch.nn as nn
22
+ import torch.nn.functional as F
23
+
24
+ from diffusers.models.attention import CrossAttention, FeedForward
25
+ from diffusers.utils.import_utils import is_xformers_available
26
+ from einops import rearrange
27
+
28
+
29
+ class SyncNet(nn.Module):
30
+ def __init__(self, config):
31
+ super().__init__()
32
+ self.audio_encoder = DownEncoder2D(
33
+ in_channels=config["audio_encoder"]["in_channels"],
34
+ block_out_channels=config["audio_encoder"]["block_out_channels"],
35
+ downsample_factors=config["audio_encoder"]["downsample_factors"],
36
+ dropout=config["audio_encoder"]["dropout"],
37
+ attn_blocks=config["audio_encoder"]["attn_blocks"],
38
+ )
39
+
40
+ self.visual_encoder = DownEncoder2D(
41
+ in_channels=config["visual_encoder"]["in_channels"],
42
+ block_out_channels=config["visual_encoder"]["block_out_channels"],
43
+ downsample_factors=config["visual_encoder"]["downsample_factors"],
44
+ dropout=config["visual_encoder"]["dropout"],
45
+ attn_blocks=config["visual_encoder"]["attn_blocks"],
46
+ )
47
+
48
+ self.eval()
49
+
50
+ def forward(self, image_sequences, audio_sequences):
51
+ vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
52
+ audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
53
+
54
+ vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
55
+ audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
56
+
57
+ # Make them unit vectors
58
+ vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
59
+ audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
60
+
61
+ return vision_embeds, audio_embeds
62
+
63
+
64
+ class ResnetBlock2D(nn.Module):
65
+ def __init__(
66
+ self,
67
+ in_channels: int,
68
+ out_channels: int,
69
+ dropout: float = 0.0,
70
+ norm_num_groups: int = 32,
71
+ eps: float = 1e-6,
72
+ act_fn: str = "silu",
73
+ downsample_factor=2,
74
+ ):
75
+ super().__init__()
76
+
77
+ self.norm1 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True)
78
+ self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
79
+
80
+ self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=eps, affine=True)
81
+ self.dropout = nn.Dropout(dropout)
82
+ self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
83
+
84
+ if act_fn == "relu":
85
+ self.act_fn = nn.ReLU()
86
+ elif act_fn == "silu":
87
+ self.act_fn = nn.SiLU()
88
+
89
+ if in_channels != out_channels:
90
+ self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
91
+ else:
92
+ self.conv_shortcut = None
93
+
94
+ if isinstance(downsample_factor, list):
95
+ downsample_factor = tuple(downsample_factor)
96
+
97
+ if downsample_factor == 1:
98
+ self.downsample_conv = None
99
+ else:
100
+ self.downsample_conv = nn.Conv2d(
101
+ out_channels, out_channels, kernel_size=3, stride=downsample_factor, padding=0
102
+ )
103
+ self.pad = (0, 1, 0, 1)
104
+ if isinstance(downsample_factor, tuple):
105
+ if downsample_factor[0] == 1:
106
+ self.pad = (0, 1, 1, 1) # The padding order is from back to front
107
+ elif downsample_factor[1] == 1:
108
+ self.pad = (1, 1, 0, 1)
109
+
110
+ def forward(self, input_tensor):
111
+ hidden_states = input_tensor
112
+
113
+ hidden_states = self.norm1(hidden_states)
114
+ hidden_states = self.act_fn(hidden_states)
115
+
116
+ hidden_states = self.conv1(hidden_states)
117
+ hidden_states = self.norm2(hidden_states)
118
+ hidden_states = self.act_fn(hidden_states)
119
+
120
+ hidden_states = self.dropout(hidden_states)
121
+ hidden_states = self.conv2(hidden_states)
122
+
123
+ if self.conv_shortcut is not None:
124
+ input_tensor = self.conv_shortcut(input_tensor)
125
+
126
+ hidden_states += input_tensor
127
+
128
+ if self.downsample_conv is not None:
129
+ hidden_states = F.pad(hidden_states, self.pad, mode="constant", value=0)
130
+ hidden_states = self.downsample_conv(hidden_states)
131
+
132
+ return hidden_states
133
+
134
+
135
+ class AttentionBlock2D(nn.Module):
136
+ def __init__(self, query_dim, norm_num_groups=32, dropout=0.0):
137
+ super().__init__()
138
+ if not is_xformers_available():
139
+ raise ModuleNotFoundError(
140
+ "You have to install xformers to enable memory efficient attetion", name="xformers"
141
+ )
142
+ # inner_dim = dim_head * heads
143
+ self.norm1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=query_dim, eps=1e-6, affine=True)
144
+ self.norm2 = nn.LayerNorm(query_dim)
145
+ self.norm3 = nn.LayerNorm(query_dim)
146
+
147
+ self.ff = FeedForward(query_dim, dropout=dropout, activation_fn="geglu")
148
+
149
+ self.conv_in = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
150
+ self.conv_out = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0)
151
+
152
+ self.attn = CrossAttention(query_dim=query_dim, heads=8, dim_head=query_dim // 8, dropout=dropout, bias=True)
153
+ self.attn._use_memory_efficient_attention_xformers = True
154
+
155
+ def forward(self, hidden_states):
156
+ assert hidden_states.dim() == 4, f"Expected hidden_states to have ndim=4, but got ndim={hidden_states.dim()}."
157
+
158
+ batch, channel, height, width = hidden_states.shape
159
+ residual = hidden_states
160
+
161
+ hidden_states = self.norm1(hidden_states)
162
+ hidden_states = self.conv_in(hidden_states)
163
+ hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c")
164
+
165
+ norm_hidden_states = self.norm2(hidden_states)
166
+ hidden_states = self.attn(norm_hidden_states, attention_mask=None) + hidden_states
167
+ hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
168
+
169
+ hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height, w=width)
170
+ hidden_states = self.conv_out(hidden_states)
171
+
172
+ hidden_states = hidden_states + residual
173
+ return hidden_states
174
+
175
+
176
+ class DownEncoder2D(nn.Module):
177
+ def __init__(
178
+ self,
179
+ in_channels=4 * 16,
180
+ block_out_channels=[64, 128, 256, 256],
181
+ downsample_factors=[2, 2, 2, 2],
182
+ layers_per_block=2,
183
+ norm_num_groups=32,
184
+ attn_blocks=[1, 1, 1, 1],
185
+ dropout: float = 0.0,
186
+ act_fn="silu",
187
+ ):
188
+ super().__init__()
189
+ self.layers_per_block = layers_per_block
190
+
191
+ # in
192
+ self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
193
+
194
+ # down
195
+ self.down_blocks = nn.ModuleList([])
196
+
197
+ output_channels = block_out_channels[0]
198
+ for i, block_out_channel in enumerate(block_out_channels):
199
+ input_channels = output_channels
200
+ output_channels = block_out_channel
201
+ # is_final_block = i == len(block_out_channels) - 1
202
+
203
+ down_block = ResnetBlock2D(
204
+ in_channels=input_channels,
205
+ out_channels=output_channels,
206
+ downsample_factor=downsample_factors[i],
207
+ norm_num_groups=norm_num_groups,
208
+ dropout=dropout,
209
+ act_fn=act_fn,
210
+ )
211
+
212
+ self.down_blocks.append(down_block)
213
+
214
+ if attn_blocks[i] == 1:
215
+ attention_block = AttentionBlock2D(query_dim=output_channels, dropout=dropout)
216
+ self.down_blocks.append(attention_block)
217
+
218
+ # out
219
+ self.norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
220
+ self.act_fn_out = nn.ReLU()
221
+
222
+ def forward(self, hidden_states):
223
+ hidden_states = self.conv_in(hidden_states)
224
+
225
+ # down
226
+ for down_block in self.down_blocks:
227
+ hidden_states = down_block(hidden_states)
228
+
229
+ # post-process
230
+ hidden_states = self.norm_out(hidden_states)
231
+ hidden_states = self.act_fn_out(hidden_states)
232
+
233
+ return hidden_states
latentsync/models/syncnet_wav2lip.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/primepake/wav2lip_288x288/blob/master/models/syncnetv2.py
2
+ # The code here is for ablation study.
3
+
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ class SyncNetWav2Lip(nn.Module):
9
+ def __init__(self, act_fn="leaky"):
10
+ super().__init__()
11
+
12
+ # input image sequences: (15, 128, 256)
13
+ self.visual_encoder = nn.Sequential(
14
+ Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3, act_fn=act_fn), # (128, 256)
15
+ Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1, act_fn=act_fn), # (126, 127)
16
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
17
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
18
+ Conv2d(64, 128, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (63, 64)
19
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
20
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
21
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
22
+ Conv2d(128, 256, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (21, 22)
23
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
24
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
25
+ Conv2d(256, 512, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (11, 11)
26
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
27
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
28
+ Conv2d(512, 1024, kernel_size=3, stride=2, padding=1, act_fn=act_fn), # (6, 6)
29
+ Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
30
+ Conv2d(1024, 1024, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
31
+ Conv2d(1024, 1024, kernel_size=3, stride=2, padding=1, act_fn="relu"), # (3, 3)
32
+ Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1)
33
+ Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"),
34
+ )
35
+
36
+ # input audio sequences: (1, 80, 16)
37
+ self.audio_encoder = nn.Sequential(
38
+ Conv2d(1, 32, kernel_size=3, stride=1, padding=1, act_fn=act_fn),
39
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
40
+ Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
41
+ Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1, act_fn=act_fn), # (27, 16)
42
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
43
+ Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
44
+ Conv2d(64, 128, kernel_size=3, stride=3, padding=1, act_fn=act_fn), # (9, 6)
45
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
46
+ Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
47
+ Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1, act_fn=act_fn), # (3, 3)
48
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
49
+ Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
50
+ Conv2d(256, 512, kernel_size=3, stride=1, padding=1, act_fn=act_fn),
51
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
52
+ Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True, act_fn=act_fn),
53
+ Conv2d(512, 1024, kernel_size=3, stride=1, padding=0, act_fn="relu"), # (1, 1)
54
+ Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0, act_fn="relu"),
55
+ )
56
+
57
+ def forward(self, image_sequences, audio_sequences):
58
+ vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1)
59
+ audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1)
60
+
61
+ vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c)
62
+ audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c)
63
+
64
+ # Make them unit vectors
65
+ vision_embeds = F.normalize(vision_embeds, p=2, dim=1)
66
+ audio_embeds = F.normalize(audio_embeds, p=2, dim=1)
67
+
68
+ return vision_embeds, audio_embeds
69
+
70
+
71
+ class Conv2d(nn.Module):
72
+ def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, act_fn="relu", *args, **kwargs):
73
+ super().__init__(*args, **kwargs)
74
+ self.conv_block = nn.Sequential(nn.Conv2d(cin, cout, kernel_size, stride, padding), nn.BatchNorm2d(cout))
75
+ if act_fn == "relu":
76
+ self.act_fn = nn.ReLU()
77
+ elif act_fn == "tanh":
78
+ self.act_fn = nn.Tanh()
79
+ elif act_fn == "silu":
80
+ self.act_fn = nn.SiLU()
81
+ elif act_fn == "leaky":
82
+ self.act_fn = nn.LeakyReLU(0.2, inplace=True)
83
+
84
+ self.residual = residual
85
+
86
+ def forward(self, x):
87
+ out = self.conv_block(x)
88
+ if self.residual:
89
+ out += x
90
+ return self.act_fn(out)
latentsync/models/unet.py ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet.py
2
+
3
+ from dataclasses import dataclass
4
+ from typing import List, Optional, Tuple, Union
5
+ import copy
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.utils.checkpoint
10
+
11
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
12
+ from diffusers.modeling_utils import ModelMixin
13
+ from diffusers import UNet2DConditionModel
14
+ from diffusers.utils import BaseOutput, logging
15
+ from diffusers.models.embeddings import TimestepEmbedding, Timesteps
16
+ from .unet_blocks import (
17
+ CrossAttnDownBlock3D,
18
+ CrossAttnUpBlock3D,
19
+ DownBlock3D,
20
+ UNetMidBlock3DCrossAttn,
21
+ UpBlock3D,
22
+ get_down_block,
23
+ get_up_block,
24
+ )
25
+ from .resnet import InflatedConv3d, InflatedGroupNorm
26
+
27
+ from ..utils.util import zero_rank_log
28
+ from einops import rearrange
29
+ from .utils import zero_module
30
+
31
+
32
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
33
+
34
+
35
+ @dataclass
36
+ class UNet3DConditionOutput(BaseOutput):
37
+ sample: torch.FloatTensor
38
+
39
+
40
+ class UNet3DConditionModel(ModelMixin, ConfigMixin):
41
+ _supports_gradient_checkpointing = True
42
+
43
+ @register_to_config
44
+ def __init__(
45
+ self,
46
+ sample_size: Optional[int] = None,
47
+ in_channels: int = 4,
48
+ out_channels: int = 4,
49
+ center_input_sample: bool = False,
50
+ flip_sin_to_cos: bool = True,
51
+ freq_shift: int = 0,
52
+ down_block_types: Tuple[str] = (
53
+ "CrossAttnDownBlock3D",
54
+ "CrossAttnDownBlock3D",
55
+ "CrossAttnDownBlock3D",
56
+ "DownBlock3D",
57
+ ),
58
+ mid_block_type: str = "UNetMidBlock3DCrossAttn",
59
+ up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
60
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
61
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
62
+ layers_per_block: int = 2,
63
+ downsample_padding: int = 1,
64
+ mid_block_scale_factor: float = 1,
65
+ act_fn: str = "silu",
66
+ norm_num_groups: int = 32,
67
+ norm_eps: float = 1e-5,
68
+ cross_attention_dim: int = 1280,
69
+ attention_head_dim: Union[int, Tuple[int]] = 8,
70
+ dual_cross_attention: bool = False,
71
+ use_linear_projection: bool = False,
72
+ class_embed_type: Optional[str] = None,
73
+ num_class_embeds: Optional[int] = None,
74
+ upcast_attention: bool = False,
75
+ resnet_time_scale_shift: str = "default",
76
+ use_inflated_groupnorm=False,
77
+ # Additional
78
+ use_motion_module=False,
79
+ motion_module_resolutions=(1, 2, 4, 8),
80
+ motion_module_mid_block=False,
81
+ motion_module_decoder_only=False,
82
+ motion_module_type=None,
83
+ motion_module_kwargs={},
84
+ unet_use_cross_frame_attention=False,
85
+ unet_use_temporal_attention=False,
86
+ add_audio_layer=False,
87
+ audio_condition_method: str = "cross_attn",
88
+ custom_audio_layer=False,
89
+ ):
90
+ super().__init__()
91
+
92
+ self.sample_size = sample_size
93
+ time_embed_dim = block_out_channels[0] * 4
94
+ self.use_motion_module = use_motion_module
95
+ self.add_audio_layer = add_audio_layer
96
+
97
+ self.conv_in = zero_module(InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)))
98
+
99
+ # time
100
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
101
+ timestep_input_dim = block_out_channels[0]
102
+
103
+ self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
104
+
105
+ # class embedding
106
+ if class_embed_type is None and num_class_embeds is not None:
107
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
108
+ elif class_embed_type == "timestep":
109
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
110
+ elif class_embed_type == "identity":
111
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
112
+ else:
113
+ self.class_embedding = None
114
+
115
+ self.down_blocks = nn.ModuleList([])
116
+ self.mid_block = None
117
+ self.up_blocks = nn.ModuleList([])
118
+
119
+ if isinstance(only_cross_attention, bool):
120
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
121
+
122
+ if isinstance(attention_head_dim, int):
123
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
124
+
125
+ # down
126
+ output_channel = block_out_channels[0]
127
+ for i, down_block_type in enumerate(down_block_types):
128
+ res = 2**i
129
+ input_channel = output_channel
130
+ output_channel = block_out_channels[i]
131
+ is_final_block = i == len(block_out_channels) - 1
132
+
133
+ down_block = get_down_block(
134
+ down_block_type,
135
+ num_layers=layers_per_block,
136
+ in_channels=input_channel,
137
+ out_channels=output_channel,
138
+ temb_channels=time_embed_dim,
139
+ add_downsample=not is_final_block,
140
+ resnet_eps=norm_eps,
141
+ resnet_act_fn=act_fn,
142
+ resnet_groups=norm_num_groups,
143
+ cross_attention_dim=cross_attention_dim,
144
+ attn_num_head_channels=attention_head_dim[i],
145
+ downsample_padding=downsample_padding,
146
+ dual_cross_attention=dual_cross_attention,
147
+ use_linear_projection=use_linear_projection,
148
+ only_cross_attention=only_cross_attention[i],
149
+ upcast_attention=upcast_attention,
150
+ resnet_time_scale_shift=resnet_time_scale_shift,
151
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
152
+ unet_use_temporal_attention=unet_use_temporal_attention,
153
+ use_inflated_groupnorm=use_inflated_groupnorm,
154
+ use_motion_module=use_motion_module
155
+ and (res in motion_module_resolutions)
156
+ and (not motion_module_decoder_only),
157
+ motion_module_type=motion_module_type,
158
+ motion_module_kwargs=motion_module_kwargs,
159
+ add_audio_layer=add_audio_layer,
160
+ audio_condition_method=audio_condition_method,
161
+ custom_audio_layer=custom_audio_layer,
162
+ )
163
+ self.down_blocks.append(down_block)
164
+
165
+ # mid
166
+ if mid_block_type == "UNetMidBlock3DCrossAttn":
167
+ self.mid_block = UNetMidBlock3DCrossAttn(
168
+ in_channels=block_out_channels[-1],
169
+ temb_channels=time_embed_dim,
170
+ resnet_eps=norm_eps,
171
+ resnet_act_fn=act_fn,
172
+ output_scale_factor=mid_block_scale_factor,
173
+ resnet_time_scale_shift=resnet_time_scale_shift,
174
+ cross_attention_dim=cross_attention_dim,
175
+ attn_num_head_channels=attention_head_dim[-1],
176
+ resnet_groups=norm_num_groups,
177
+ dual_cross_attention=dual_cross_attention,
178
+ use_linear_projection=use_linear_projection,
179
+ upcast_attention=upcast_attention,
180
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
181
+ unet_use_temporal_attention=unet_use_temporal_attention,
182
+ use_inflated_groupnorm=use_inflated_groupnorm,
183
+ use_motion_module=use_motion_module and motion_module_mid_block,
184
+ motion_module_type=motion_module_type,
185
+ motion_module_kwargs=motion_module_kwargs,
186
+ add_audio_layer=add_audio_layer,
187
+ audio_condition_method=audio_condition_method,
188
+ custom_audio_layer=custom_audio_layer,
189
+ )
190
+ else:
191
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
192
+
193
+ # count how many layers upsample the videos
194
+ self.num_upsamplers = 0
195
+
196
+ # up
197
+ reversed_block_out_channels = list(reversed(block_out_channels))
198
+ reversed_attention_head_dim = list(reversed(attention_head_dim))
199
+ only_cross_attention = list(reversed(only_cross_attention))
200
+ output_channel = reversed_block_out_channels[0]
201
+ for i, up_block_type in enumerate(up_block_types):
202
+ res = 2 ** (3 - i)
203
+ is_final_block = i == len(block_out_channels) - 1
204
+
205
+ prev_output_channel = output_channel
206
+ output_channel = reversed_block_out_channels[i]
207
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
208
+
209
+ # add upsample block for all BUT final layer
210
+ if not is_final_block:
211
+ add_upsample = True
212
+ self.num_upsamplers += 1
213
+ else:
214
+ add_upsample = False
215
+
216
+ up_block = get_up_block(
217
+ up_block_type,
218
+ num_layers=layers_per_block + 1,
219
+ in_channels=input_channel,
220
+ out_channels=output_channel,
221
+ prev_output_channel=prev_output_channel,
222
+ temb_channels=time_embed_dim,
223
+ add_upsample=add_upsample,
224
+ resnet_eps=norm_eps,
225
+ resnet_act_fn=act_fn,
226
+ resnet_groups=norm_num_groups,
227
+ cross_attention_dim=cross_attention_dim,
228
+ attn_num_head_channels=reversed_attention_head_dim[i],
229
+ dual_cross_attention=dual_cross_attention,
230
+ use_linear_projection=use_linear_projection,
231
+ only_cross_attention=only_cross_attention[i],
232
+ upcast_attention=upcast_attention,
233
+ resnet_time_scale_shift=resnet_time_scale_shift,
234
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
235
+ unet_use_temporal_attention=unet_use_temporal_attention,
236
+ use_inflated_groupnorm=use_inflated_groupnorm,
237
+ use_motion_module=use_motion_module and (res in motion_module_resolutions),
238
+ motion_module_type=motion_module_type,
239
+ motion_module_kwargs=motion_module_kwargs,
240
+ add_audio_layer=add_audio_layer,
241
+ audio_condition_method=audio_condition_method,
242
+ custom_audio_layer=custom_audio_layer,
243
+ )
244
+ self.up_blocks.append(up_block)
245
+ prev_output_channel = output_channel
246
+
247
+ # out
248
+ if use_inflated_groupnorm:
249
+ self.conv_norm_out = InflatedGroupNorm(
250
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
251
+ )
252
+ else:
253
+ self.conv_norm_out = nn.GroupNorm(
254
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
255
+ )
256
+ self.conv_act = nn.SiLU()
257
+
258
+ self.conv_out = zero_module(InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1))
259
+
260
+ def set_attention_slice(self, slice_size):
261
+ r"""
262
+ Enable sliced attention computation.
263
+
264
+ When this option is enabled, the attention module will split the input tensor in slices, to compute attention
265
+ in several steps. This is useful to save some memory in exchange for a small speed decrease.
266
+
267
+ Args:
268
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
269
+ When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
270
+ `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
271
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
272
+ must be a multiple of `slice_size`.
273
+ """
274
+ sliceable_head_dims = []
275
+
276
+ def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
277
+ if hasattr(module, "set_attention_slice"):
278
+ sliceable_head_dims.append(module.sliceable_head_dim)
279
+
280
+ for child in module.children():
281
+ fn_recursive_retrieve_slicable_dims(child)
282
+
283
+ # retrieve number of attention layers
284
+ for module in self.children():
285
+ fn_recursive_retrieve_slicable_dims(module)
286
+
287
+ num_slicable_layers = len(sliceable_head_dims)
288
+
289
+ if slice_size == "auto":
290
+ # half the attention head size is usually a good trade-off between
291
+ # speed and memory
292
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
293
+ elif slice_size == "max":
294
+ # make smallest slice possible
295
+ slice_size = num_slicable_layers * [1]
296
+
297
+ slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
298
+
299
+ if len(slice_size) != len(sliceable_head_dims):
300
+ raise ValueError(
301
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
302
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
303
+ )
304
+
305
+ for i in range(len(slice_size)):
306
+ size = slice_size[i]
307
+ dim = sliceable_head_dims[i]
308
+ if size is not None and size > dim:
309
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
310
+
311
+ # Recursively walk through all the children.
312
+ # Any children which exposes the set_attention_slice method
313
+ # gets the message
314
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
315
+ if hasattr(module, "set_attention_slice"):
316
+ module.set_attention_slice(slice_size.pop())
317
+
318
+ for child in module.children():
319
+ fn_recursive_set_attention_slice(child, slice_size)
320
+
321
+ reversed_slice_size = list(reversed(slice_size))
322
+ for module in self.children():
323
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
324
+
325
+ def _set_gradient_checkpointing(self, module, value=False):
326
+ if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
327
+ module.gradient_checkpointing = value
328
+
329
+ def forward(
330
+ self,
331
+ sample: torch.FloatTensor,
332
+ timestep: Union[torch.Tensor, float, int],
333
+ encoder_hidden_states: torch.Tensor,
334
+ class_labels: Optional[torch.Tensor] = None,
335
+ attention_mask: Optional[torch.Tensor] = None,
336
+ # support controlnet
337
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
338
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
339
+ return_dict: bool = True,
340
+ ) -> Union[UNet3DConditionOutput, Tuple]:
341
+ r"""
342
+ Args:
343
+ sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
344
+ timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
345
+ encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
346
+ return_dict (`bool`, *optional*, defaults to `True`):
347
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
348
+
349
+ Returns:
350
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
351
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
352
+ returning a tuple, the first element is the sample tensor.
353
+ """
354
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
355
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
356
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
357
+ # on the fly if necessary.
358
+ default_overall_up_factor = 2**self.num_upsamplers
359
+
360
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
361
+ forward_upsample_size = False
362
+ upsample_size = None
363
+
364
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
365
+ logger.info("Forward upsample size to force interpolation output size.")
366
+ forward_upsample_size = True
367
+
368
+ # prepare attention_mask
369
+ if attention_mask is not None:
370
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
371
+ attention_mask = attention_mask.unsqueeze(1)
372
+
373
+ # center input if necessary
374
+ if self.config.center_input_sample:
375
+ sample = 2 * sample - 1.0
376
+
377
+ # time
378
+ timesteps = timestep
379
+ if not torch.is_tensor(timesteps):
380
+ # This would be a good case for the `match` statement (Python 3.10+)
381
+ is_mps = sample.device.type == "mps"
382
+ if isinstance(timestep, float):
383
+ dtype = torch.float32 if is_mps else torch.float64
384
+ else:
385
+ dtype = torch.int32 if is_mps else torch.int64
386
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
387
+ elif len(timesteps.shape) == 0:
388
+ timesteps = timesteps[None].to(sample.device)
389
+
390
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
391
+ timesteps = timesteps.expand(sample.shape[0])
392
+
393
+ t_emb = self.time_proj(timesteps)
394
+
395
+ # timesteps does not contain any weights and will always return f32 tensors
396
+ # but time_embedding might actually be running in fp16. so we need to cast here.
397
+ # there might be better ways to encapsulate this.
398
+ t_emb = t_emb.to(dtype=self.dtype)
399
+ emb = self.time_embedding(t_emb)
400
+
401
+ if self.class_embedding is not None:
402
+ if class_labels is None:
403
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
404
+
405
+ if self.config.class_embed_type == "timestep":
406
+ class_labels = self.time_proj(class_labels)
407
+
408
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
409
+ emb = emb + class_emb
410
+
411
+ # pre-process
412
+ sample = self.conv_in(sample)
413
+
414
+ # down
415
+ down_block_res_samples = (sample,)
416
+ for downsample_block in self.down_blocks:
417
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
418
+ sample, res_samples = downsample_block(
419
+ hidden_states=sample,
420
+ temb=emb,
421
+ encoder_hidden_states=encoder_hidden_states,
422
+ attention_mask=attention_mask,
423
+ )
424
+ else:
425
+ sample, res_samples = downsample_block(
426
+ hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
427
+ )
428
+
429
+ down_block_res_samples += res_samples
430
+
431
+ # support controlnet
432
+ down_block_res_samples = list(down_block_res_samples)
433
+ if down_block_additional_residuals is not None:
434
+ for i, down_block_additional_residual in enumerate(down_block_additional_residuals):
435
+ if down_block_additional_residual.dim() == 4: # boardcast
436
+ down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
437
+ down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual
438
+
439
+ # mid
440
+ sample = self.mid_block(
441
+ sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
442
+ )
443
+
444
+ # support controlnet
445
+ if mid_block_additional_residual is not None:
446
+ if mid_block_additional_residual.dim() == 4: # boardcast
447
+ mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2)
448
+ sample = sample + mid_block_additional_residual
449
+
450
+ # up
451
+ for i, upsample_block in enumerate(self.up_blocks):
452
+ is_final_block = i == len(self.up_blocks) - 1
453
+
454
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
455
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
456
+
457
+ # if we have not reached the final block and need to forward the
458
+ # upsample size, we do it here
459
+ if not is_final_block and forward_upsample_size:
460
+ upsample_size = down_block_res_samples[-1].shape[2:]
461
+
462
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
463
+ sample = upsample_block(
464
+ hidden_states=sample,
465
+ temb=emb,
466
+ res_hidden_states_tuple=res_samples,
467
+ encoder_hidden_states=encoder_hidden_states,
468
+ upsample_size=upsample_size,
469
+ attention_mask=attention_mask,
470
+ )
471
+ else:
472
+ sample = upsample_block(
473
+ hidden_states=sample,
474
+ temb=emb,
475
+ res_hidden_states_tuple=res_samples,
476
+ upsample_size=upsample_size,
477
+ encoder_hidden_states=encoder_hidden_states,
478
+ )
479
+
480
+ # post-process
481
+ sample = self.conv_norm_out(sample)
482
+ sample = self.conv_act(sample)
483
+ sample = self.conv_out(sample)
484
+
485
+ if not return_dict:
486
+ return (sample,)
487
+
488
+ return UNet3DConditionOutput(sample=sample)
489
+
490
+ def load_state_dict(self, state_dict, strict=True):
491
+ # If the loaded checkpoint's in_channels or out_channels are different from config
492
+ temp_state_dict = copy.deepcopy(state_dict)
493
+ if temp_state_dict["conv_in.weight"].shape[1] != self.config.in_channels:
494
+ del temp_state_dict["conv_in.weight"]
495
+ del temp_state_dict["conv_in.bias"]
496
+ if temp_state_dict["conv_out.weight"].shape[0] != self.config.out_channels:
497
+ del temp_state_dict["conv_out.weight"]
498
+ del temp_state_dict["conv_out.bias"]
499
+
500
+ # If the loaded checkpoint's cross_attention_dim is different from config
501
+ keys_to_remove = []
502
+ for key in temp_state_dict:
503
+ if "audio_cross_attn.attn.to_k." in key or "audio_cross_attn.attn.to_v." in key:
504
+ if temp_state_dict[key].shape[1] != self.config.cross_attention_dim:
505
+ keys_to_remove.append(key)
506
+
507
+ for key in keys_to_remove:
508
+ del temp_state_dict[key]
509
+
510
+ return super().load_state_dict(state_dict=temp_state_dict, strict=strict)
511
+
512
+ @classmethod
513
+ def from_pretrained(cls, model_config: dict, ckpt_path: str, device="cpu"):
514
+ unet = cls.from_config(model_config).to(device)
515
+ if ckpt_path != "":
516
+ zero_rank_log(logger, f"Load from checkpoint: {ckpt_path}")
517
+ ckpt = torch.load(ckpt_path, map_location=device)
518
+ if "global_step" in ckpt:
519
+ zero_rank_log(logger, f"resume from global_step: {ckpt['global_step']}")
520
+ resume_global_step = ckpt["global_step"]
521
+ else:
522
+ resume_global_step = 0
523
+ state_dict = ckpt["state_dict"] if "state_dict" in ckpt else ckpt
524
+ unet.load_state_dict(state_dict, strict=False)
525
+ else:
526
+ resume_global_step = 0
527
+
528
+ return unet, resume_global_step
latentsync/models/unet_blocks.py ADDED
@@ -0,0 +1,903 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from .attention import Transformer3DModel
7
+ from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
8
+ from .motion_module import get_motion_module
9
+
10
+
11
+ def get_down_block(
12
+ down_block_type,
13
+ num_layers,
14
+ in_channels,
15
+ out_channels,
16
+ temb_channels,
17
+ add_downsample,
18
+ resnet_eps,
19
+ resnet_act_fn,
20
+ attn_num_head_channels,
21
+ resnet_groups=None,
22
+ cross_attention_dim=None,
23
+ downsample_padding=None,
24
+ dual_cross_attention=False,
25
+ use_linear_projection=False,
26
+ only_cross_attention=False,
27
+ upcast_attention=False,
28
+ resnet_time_scale_shift="default",
29
+ unet_use_cross_frame_attention=False,
30
+ unet_use_temporal_attention=False,
31
+ use_inflated_groupnorm=False,
32
+ use_motion_module=None,
33
+ motion_module_type=None,
34
+ motion_module_kwargs=None,
35
+ add_audio_layer=False,
36
+ audio_condition_method="cross_attn",
37
+ custom_audio_layer=False,
38
+ ):
39
+ down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
40
+ if down_block_type == "DownBlock3D":
41
+ return DownBlock3D(
42
+ num_layers=num_layers,
43
+ in_channels=in_channels,
44
+ out_channels=out_channels,
45
+ temb_channels=temb_channels,
46
+ add_downsample=add_downsample,
47
+ resnet_eps=resnet_eps,
48
+ resnet_act_fn=resnet_act_fn,
49
+ resnet_groups=resnet_groups,
50
+ downsample_padding=downsample_padding,
51
+ resnet_time_scale_shift=resnet_time_scale_shift,
52
+ use_inflated_groupnorm=use_inflated_groupnorm,
53
+ use_motion_module=use_motion_module,
54
+ motion_module_type=motion_module_type,
55
+ motion_module_kwargs=motion_module_kwargs,
56
+ )
57
+ elif down_block_type == "CrossAttnDownBlock3D":
58
+ if cross_attention_dim is None:
59
+ raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
60
+ return CrossAttnDownBlock3D(
61
+ num_layers=num_layers,
62
+ in_channels=in_channels,
63
+ out_channels=out_channels,
64
+ temb_channels=temb_channels,
65
+ add_downsample=add_downsample,
66
+ resnet_eps=resnet_eps,
67
+ resnet_act_fn=resnet_act_fn,
68
+ resnet_groups=resnet_groups,
69
+ downsample_padding=downsample_padding,
70
+ cross_attention_dim=cross_attention_dim,
71
+ attn_num_head_channels=attn_num_head_channels,
72
+ dual_cross_attention=dual_cross_attention,
73
+ use_linear_projection=use_linear_projection,
74
+ only_cross_attention=only_cross_attention,
75
+ upcast_attention=upcast_attention,
76
+ resnet_time_scale_shift=resnet_time_scale_shift,
77
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
78
+ unet_use_temporal_attention=unet_use_temporal_attention,
79
+ use_inflated_groupnorm=use_inflated_groupnorm,
80
+ use_motion_module=use_motion_module,
81
+ motion_module_type=motion_module_type,
82
+ motion_module_kwargs=motion_module_kwargs,
83
+ add_audio_layer=add_audio_layer,
84
+ audio_condition_method=audio_condition_method,
85
+ custom_audio_layer=custom_audio_layer,
86
+ )
87
+ raise ValueError(f"{down_block_type} does not exist.")
88
+
89
+
90
+ def get_up_block(
91
+ up_block_type,
92
+ num_layers,
93
+ in_channels,
94
+ out_channels,
95
+ prev_output_channel,
96
+ temb_channels,
97
+ add_upsample,
98
+ resnet_eps,
99
+ resnet_act_fn,
100
+ attn_num_head_channels,
101
+ resnet_groups=None,
102
+ cross_attention_dim=None,
103
+ dual_cross_attention=False,
104
+ use_linear_projection=False,
105
+ only_cross_attention=False,
106
+ upcast_attention=False,
107
+ resnet_time_scale_shift="default",
108
+ unet_use_cross_frame_attention=False,
109
+ unet_use_temporal_attention=False,
110
+ use_inflated_groupnorm=False,
111
+ use_motion_module=None,
112
+ motion_module_type=None,
113
+ motion_module_kwargs=None,
114
+ add_audio_layer=False,
115
+ audio_condition_method="cross_attn",
116
+ custom_audio_layer=False,
117
+ ):
118
+ up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
119
+ if up_block_type == "UpBlock3D":
120
+ return UpBlock3D(
121
+ num_layers=num_layers,
122
+ in_channels=in_channels,
123
+ out_channels=out_channels,
124
+ prev_output_channel=prev_output_channel,
125
+ temb_channels=temb_channels,
126
+ add_upsample=add_upsample,
127
+ resnet_eps=resnet_eps,
128
+ resnet_act_fn=resnet_act_fn,
129
+ resnet_groups=resnet_groups,
130
+ resnet_time_scale_shift=resnet_time_scale_shift,
131
+ use_inflated_groupnorm=use_inflated_groupnorm,
132
+ use_motion_module=use_motion_module,
133
+ motion_module_type=motion_module_type,
134
+ motion_module_kwargs=motion_module_kwargs,
135
+ )
136
+ elif up_block_type == "CrossAttnUpBlock3D":
137
+ if cross_attention_dim is None:
138
+ raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
139
+ return CrossAttnUpBlock3D(
140
+ num_layers=num_layers,
141
+ in_channels=in_channels,
142
+ out_channels=out_channels,
143
+ prev_output_channel=prev_output_channel,
144
+ temb_channels=temb_channels,
145
+ add_upsample=add_upsample,
146
+ resnet_eps=resnet_eps,
147
+ resnet_act_fn=resnet_act_fn,
148
+ resnet_groups=resnet_groups,
149
+ cross_attention_dim=cross_attention_dim,
150
+ attn_num_head_channels=attn_num_head_channels,
151
+ dual_cross_attention=dual_cross_attention,
152
+ use_linear_projection=use_linear_projection,
153
+ only_cross_attention=only_cross_attention,
154
+ upcast_attention=upcast_attention,
155
+ resnet_time_scale_shift=resnet_time_scale_shift,
156
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
157
+ unet_use_temporal_attention=unet_use_temporal_attention,
158
+ use_inflated_groupnorm=use_inflated_groupnorm,
159
+ use_motion_module=use_motion_module,
160
+ motion_module_type=motion_module_type,
161
+ motion_module_kwargs=motion_module_kwargs,
162
+ add_audio_layer=add_audio_layer,
163
+ audio_condition_method=audio_condition_method,
164
+ custom_audio_layer=custom_audio_layer,
165
+ )
166
+ raise ValueError(f"{up_block_type} does not exist.")
167
+
168
+
169
+ class UNetMidBlock3DCrossAttn(nn.Module):
170
+ def __init__(
171
+ self,
172
+ in_channels: int,
173
+ temb_channels: int,
174
+ dropout: float = 0.0,
175
+ num_layers: int = 1,
176
+ resnet_eps: float = 1e-6,
177
+ resnet_time_scale_shift: str = "default",
178
+ resnet_act_fn: str = "swish",
179
+ resnet_groups: int = 32,
180
+ resnet_pre_norm: bool = True,
181
+ attn_num_head_channels=1,
182
+ output_scale_factor=1.0,
183
+ cross_attention_dim=1280,
184
+ dual_cross_attention=False,
185
+ use_linear_projection=False,
186
+ upcast_attention=False,
187
+ unet_use_cross_frame_attention=False,
188
+ unet_use_temporal_attention=False,
189
+ use_inflated_groupnorm=False,
190
+ use_motion_module=None,
191
+ motion_module_type=None,
192
+ motion_module_kwargs=None,
193
+ add_audio_layer=False,
194
+ audio_condition_method="cross_attn",
195
+ custom_audio_layer: bool = False,
196
+ ):
197
+ super().__init__()
198
+
199
+ self.has_cross_attention = True
200
+ self.attn_num_head_channels = attn_num_head_channels
201
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
202
+
203
+ # there is always at least one resnet
204
+ resnets = [
205
+ ResnetBlock3D(
206
+ in_channels=in_channels,
207
+ out_channels=in_channels,
208
+ temb_channels=temb_channels,
209
+ eps=resnet_eps,
210
+ groups=resnet_groups,
211
+ dropout=dropout,
212
+ time_embedding_norm=resnet_time_scale_shift,
213
+ non_linearity=resnet_act_fn,
214
+ output_scale_factor=output_scale_factor,
215
+ pre_norm=resnet_pre_norm,
216
+ use_inflated_groupnorm=use_inflated_groupnorm,
217
+ )
218
+ ]
219
+ attentions = []
220
+ audio_attentions = []
221
+ motion_modules = []
222
+
223
+ for _ in range(num_layers):
224
+ if dual_cross_attention:
225
+ raise NotImplementedError
226
+ attentions.append(
227
+ Transformer3DModel(
228
+ attn_num_head_channels,
229
+ in_channels // attn_num_head_channels,
230
+ in_channels=in_channels,
231
+ num_layers=1,
232
+ cross_attention_dim=cross_attention_dim,
233
+ norm_num_groups=resnet_groups,
234
+ use_linear_projection=use_linear_projection,
235
+ upcast_attention=upcast_attention,
236
+ use_motion_module=use_motion_module,
237
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
238
+ unet_use_temporal_attention=unet_use_temporal_attention,
239
+ add_audio_layer=add_audio_layer,
240
+ audio_condition_method=audio_condition_method,
241
+ )
242
+ )
243
+ audio_attentions.append(
244
+ Transformer3DModel(
245
+ attn_num_head_channels,
246
+ in_channels // attn_num_head_channels,
247
+ in_channels=in_channels,
248
+ num_layers=1,
249
+ cross_attention_dim=cross_attention_dim,
250
+ norm_num_groups=resnet_groups,
251
+ use_linear_projection=use_linear_projection,
252
+ upcast_attention=upcast_attention,
253
+ use_motion_module=use_motion_module,
254
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
255
+ unet_use_temporal_attention=unet_use_temporal_attention,
256
+ add_audio_layer=add_audio_layer,
257
+ audio_condition_method=audio_condition_method,
258
+ custom_audio_layer=True,
259
+ )
260
+ if custom_audio_layer
261
+ else None
262
+ )
263
+ motion_modules.append(
264
+ get_motion_module(
265
+ in_channels=in_channels,
266
+ motion_module_type=motion_module_type,
267
+ motion_module_kwargs=motion_module_kwargs,
268
+ )
269
+ if use_motion_module
270
+ else None
271
+ )
272
+ resnets.append(
273
+ ResnetBlock3D(
274
+ in_channels=in_channels,
275
+ out_channels=in_channels,
276
+ temb_channels=temb_channels,
277
+ eps=resnet_eps,
278
+ groups=resnet_groups,
279
+ dropout=dropout,
280
+ time_embedding_norm=resnet_time_scale_shift,
281
+ non_linearity=resnet_act_fn,
282
+ output_scale_factor=output_scale_factor,
283
+ pre_norm=resnet_pre_norm,
284
+ use_inflated_groupnorm=use_inflated_groupnorm,
285
+ )
286
+ )
287
+
288
+ self.attentions = nn.ModuleList(attentions)
289
+ self.audio_attentions = nn.ModuleList(audio_attentions)
290
+ self.resnets = nn.ModuleList(resnets)
291
+ self.motion_modules = nn.ModuleList(motion_modules)
292
+
293
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
294
+ hidden_states = self.resnets[0](hidden_states, temb)
295
+ for attn, audio_attn, resnet, motion_module in zip(
296
+ self.attentions, self.audio_attentions, self.resnets[1:], self.motion_modules
297
+ ):
298
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
299
+ hidden_states = (
300
+ audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
301
+ if audio_attn is not None
302
+ else hidden_states
303
+ )
304
+ hidden_states = (
305
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
306
+ if motion_module is not None
307
+ else hidden_states
308
+ )
309
+ hidden_states = resnet(hidden_states, temb)
310
+
311
+ return hidden_states
312
+
313
+
314
+ class CrossAttnDownBlock3D(nn.Module):
315
+ def __init__(
316
+ self,
317
+ in_channels: int,
318
+ out_channels: int,
319
+ temb_channels: int,
320
+ dropout: float = 0.0,
321
+ num_layers: int = 1,
322
+ resnet_eps: float = 1e-6,
323
+ resnet_time_scale_shift: str = "default",
324
+ resnet_act_fn: str = "swish",
325
+ resnet_groups: int = 32,
326
+ resnet_pre_norm: bool = True,
327
+ attn_num_head_channels=1,
328
+ cross_attention_dim=1280,
329
+ output_scale_factor=1.0,
330
+ downsample_padding=1,
331
+ add_downsample=True,
332
+ dual_cross_attention=False,
333
+ use_linear_projection=False,
334
+ only_cross_attention=False,
335
+ upcast_attention=False,
336
+ unet_use_cross_frame_attention=False,
337
+ unet_use_temporal_attention=False,
338
+ use_inflated_groupnorm=False,
339
+ use_motion_module=None,
340
+ motion_module_type=None,
341
+ motion_module_kwargs=None,
342
+ add_audio_layer=False,
343
+ audio_condition_method="cross_attn",
344
+ custom_audio_layer: bool = False,
345
+ ):
346
+ super().__init__()
347
+ resnets = []
348
+ attentions = []
349
+ audio_attentions = []
350
+ motion_modules = []
351
+
352
+ self.has_cross_attention = True
353
+ self.attn_num_head_channels = attn_num_head_channels
354
+
355
+ for i in range(num_layers):
356
+ in_channels = in_channels if i == 0 else out_channels
357
+ resnets.append(
358
+ ResnetBlock3D(
359
+ in_channels=in_channels,
360
+ out_channels=out_channels,
361
+ temb_channels=temb_channels,
362
+ eps=resnet_eps,
363
+ groups=resnet_groups,
364
+ dropout=dropout,
365
+ time_embedding_norm=resnet_time_scale_shift,
366
+ non_linearity=resnet_act_fn,
367
+ output_scale_factor=output_scale_factor,
368
+ pre_norm=resnet_pre_norm,
369
+ use_inflated_groupnorm=use_inflated_groupnorm,
370
+ )
371
+ )
372
+ if dual_cross_attention:
373
+ raise NotImplementedError
374
+ attentions.append(
375
+ Transformer3DModel(
376
+ attn_num_head_channels,
377
+ out_channels // attn_num_head_channels,
378
+ in_channels=out_channels,
379
+ num_layers=1,
380
+ cross_attention_dim=cross_attention_dim,
381
+ norm_num_groups=resnet_groups,
382
+ use_linear_projection=use_linear_projection,
383
+ only_cross_attention=only_cross_attention,
384
+ upcast_attention=upcast_attention,
385
+ use_motion_module=use_motion_module,
386
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
387
+ unet_use_temporal_attention=unet_use_temporal_attention,
388
+ add_audio_layer=add_audio_layer,
389
+ audio_condition_method=audio_condition_method,
390
+ )
391
+ )
392
+ audio_attentions.append(
393
+ Transformer3DModel(
394
+ attn_num_head_channels,
395
+ out_channels // attn_num_head_channels,
396
+ in_channels=out_channels,
397
+ num_layers=1,
398
+ cross_attention_dim=cross_attention_dim,
399
+ norm_num_groups=resnet_groups,
400
+ use_linear_projection=use_linear_projection,
401
+ only_cross_attention=only_cross_attention,
402
+ upcast_attention=upcast_attention,
403
+ use_motion_module=use_motion_module,
404
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
405
+ unet_use_temporal_attention=unet_use_temporal_attention,
406
+ add_audio_layer=add_audio_layer,
407
+ audio_condition_method=audio_condition_method,
408
+ custom_audio_layer=True,
409
+ )
410
+ if custom_audio_layer
411
+ else None
412
+ )
413
+ motion_modules.append(
414
+ get_motion_module(
415
+ in_channels=out_channels,
416
+ motion_module_type=motion_module_type,
417
+ motion_module_kwargs=motion_module_kwargs,
418
+ )
419
+ if use_motion_module
420
+ else None
421
+ )
422
+
423
+ self.attentions = nn.ModuleList(attentions)
424
+ self.audio_attentions = nn.ModuleList(audio_attentions)
425
+ self.resnets = nn.ModuleList(resnets)
426
+ self.motion_modules = nn.ModuleList(motion_modules)
427
+
428
+ if add_downsample:
429
+ self.downsamplers = nn.ModuleList(
430
+ [
431
+ Downsample3D(
432
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
433
+ )
434
+ ]
435
+ )
436
+ else:
437
+ self.downsamplers = None
438
+
439
+ self.gradient_checkpointing = False
440
+
441
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
442
+ output_states = ()
443
+
444
+ for resnet, attn, audio_attn, motion_module in zip(
445
+ self.resnets, self.attentions, self.audio_attentions, self.motion_modules
446
+ ):
447
+ if self.training and self.gradient_checkpointing:
448
+
449
+ def create_custom_forward(module, return_dict=None):
450
+ def custom_forward(*inputs):
451
+ if return_dict is not None:
452
+ return module(*inputs, return_dict=return_dict)
453
+ else:
454
+ return module(*inputs)
455
+
456
+ return custom_forward
457
+
458
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
459
+ hidden_states = torch.utils.checkpoint.checkpoint(
460
+ create_custom_forward(attn, return_dict=False),
461
+ hidden_states,
462
+ encoder_hidden_states,
463
+ )[0]
464
+ if motion_module is not None:
465
+ hidden_states = torch.utils.checkpoint.checkpoint(
466
+ create_custom_forward(motion_module),
467
+ hidden_states.requires_grad_(),
468
+ temb,
469
+ encoder_hidden_states,
470
+ )
471
+
472
+ else:
473
+ hidden_states = resnet(hidden_states, temb)
474
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
475
+
476
+ hidden_states = (
477
+ audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
478
+ if audio_attn is not None
479
+ else hidden_states
480
+ )
481
+
482
+ # add motion module
483
+ hidden_states = (
484
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
485
+ if motion_module is not None
486
+ else hidden_states
487
+ )
488
+
489
+ output_states += (hidden_states,)
490
+
491
+ if self.downsamplers is not None:
492
+ for downsampler in self.downsamplers:
493
+ hidden_states = downsampler(hidden_states)
494
+
495
+ output_states += (hidden_states,)
496
+
497
+ return hidden_states, output_states
498
+
499
+
500
+ class DownBlock3D(nn.Module):
501
+ def __init__(
502
+ self,
503
+ in_channels: int,
504
+ out_channels: int,
505
+ temb_channels: int,
506
+ dropout: float = 0.0,
507
+ num_layers: int = 1,
508
+ resnet_eps: float = 1e-6,
509
+ resnet_time_scale_shift: str = "default",
510
+ resnet_act_fn: str = "swish",
511
+ resnet_groups: int = 32,
512
+ resnet_pre_norm: bool = True,
513
+ output_scale_factor=1.0,
514
+ add_downsample=True,
515
+ downsample_padding=1,
516
+ use_inflated_groupnorm=False,
517
+ use_motion_module=None,
518
+ motion_module_type=None,
519
+ motion_module_kwargs=None,
520
+ ):
521
+ super().__init__()
522
+ resnets = []
523
+ motion_modules = []
524
+
525
+ for i in range(num_layers):
526
+ in_channels = in_channels if i == 0 else out_channels
527
+ resnets.append(
528
+ ResnetBlock3D(
529
+ in_channels=in_channels,
530
+ out_channels=out_channels,
531
+ temb_channels=temb_channels,
532
+ eps=resnet_eps,
533
+ groups=resnet_groups,
534
+ dropout=dropout,
535
+ time_embedding_norm=resnet_time_scale_shift,
536
+ non_linearity=resnet_act_fn,
537
+ output_scale_factor=output_scale_factor,
538
+ pre_norm=resnet_pre_norm,
539
+ use_inflated_groupnorm=use_inflated_groupnorm,
540
+ )
541
+ )
542
+ motion_modules.append(
543
+ get_motion_module(
544
+ in_channels=out_channels,
545
+ motion_module_type=motion_module_type,
546
+ motion_module_kwargs=motion_module_kwargs,
547
+ )
548
+ if use_motion_module
549
+ else None
550
+ )
551
+
552
+ self.resnets = nn.ModuleList(resnets)
553
+ self.motion_modules = nn.ModuleList(motion_modules)
554
+
555
+ if add_downsample:
556
+ self.downsamplers = nn.ModuleList(
557
+ [
558
+ Downsample3D(
559
+ out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
560
+ )
561
+ ]
562
+ )
563
+ else:
564
+ self.downsamplers = None
565
+
566
+ self.gradient_checkpointing = False
567
+
568
+ def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
569
+ output_states = ()
570
+
571
+ for resnet, motion_module in zip(self.resnets, self.motion_modules):
572
+ if self.training and self.gradient_checkpointing:
573
+
574
+ def create_custom_forward(module):
575
+ def custom_forward(*inputs):
576
+ return module(*inputs)
577
+
578
+ return custom_forward
579
+
580
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
581
+ if motion_module is not None:
582
+ hidden_states = torch.utils.checkpoint.checkpoint(
583
+ create_custom_forward(motion_module),
584
+ hidden_states.requires_grad_(),
585
+ temb,
586
+ encoder_hidden_states,
587
+ )
588
+ else:
589
+ hidden_states = resnet(hidden_states, temb)
590
+
591
+ # add motion module
592
+ hidden_states = (
593
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
594
+ if motion_module is not None
595
+ else hidden_states
596
+ )
597
+
598
+ output_states += (hidden_states,)
599
+
600
+ if self.downsamplers is not None:
601
+ for downsampler in self.downsamplers:
602
+ hidden_states = downsampler(hidden_states)
603
+
604
+ output_states += (hidden_states,)
605
+
606
+ return hidden_states, output_states
607
+
608
+
609
+ class CrossAttnUpBlock3D(nn.Module):
610
+ def __init__(
611
+ self,
612
+ in_channels: int,
613
+ out_channels: int,
614
+ prev_output_channel: int,
615
+ temb_channels: int,
616
+ dropout: float = 0.0,
617
+ num_layers: int = 1,
618
+ resnet_eps: float = 1e-6,
619
+ resnet_time_scale_shift: str = "default",
620
+ resnet_act_fn: str = "swish",
621
+ resnet_groups: int = 32,
622
+ resnet_pre_norm: bool = True,
623
+ attn_num_head_channels=1,
624
+ cross_attention_dim=1280,
625
+ output_scale_factor=1.0,
626
+ add_upsample=True,
627
+ dual_cross_attention=False,
628
+ use_linear_projection=False,
629
+ only_cross_attention=False,
630
+ upcast_attention=False,
631
+ unet_use_cross_frame_attention=False,
632
+ unet_use_temporal_attention=False,
633
+ use_inflated_groupnorm=False,
634
+ use_motion_module=None,
635
+ motion_module_type=None,
636
+ motion_module_kwargs=None,
637
+ add_audio_layer=False,
638
+ audio_condition_method="cross_attn",
639
+ custom_audio_layer=False,
640
+ ):
641
+ super().__init__()
642
+ resnets = []
643
+ attentions = []
644
+ audio_attentions = []
645
+ motion_modules = []
646
+
647
+ self.has_cross_attention = True
648
+ self.attn_num_head_channels = attn_num_head_channels
649
+
650
+ for i in range(num_layers):
651
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
652
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
653
+
654
+ resnets.append(
655
+ ResnetBlock3D(
656
+ in_channels=resnet_in_channels + res_skip_channels,
657
+ out_channels=out_channels,
658
+ temb_channels=temb_channels,
659
+ eps=resnet_eps,
660
+ groups=resnet_groups,
661
+ dropout=dropout,
662
+ time_embedding_norm=resnet_time_scale_shift,
663
+ non_linearity=resnet_act_fn,
664
+ output_scale_factor=output_scale_factor,
665
+ pre_norm=resnet_pre_norm,
666
+ use_inflated_groupnorm=use_inflated_groupnorm,
667
+ )
668
+ )
669
+ if dual_cross_attention:
670
+ raise NotImplementedError
671
+ attentions.append(
672
+ Transformer3DModel(
673
+ attn_num_head_channels,
674
+ out_channels // attn_num_head_channels,
675
+ in_channels=out_channels,
676
+ num_layers=1,
677
+ cross_attention_dim=cross_attention_dim,
678
+ norm_num_groups=resnet_groups,
679
+ use_linear_projection=use_linear_projection,
680
+ only_cross_attention=only_cross_attention,
681
+ upcast_attention=upcast_attention,
682
+ use_motion_module=use_motion_module,
683
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
684
+ unet_use_temporal_attention=unet_use_temporal_attention,
685
+ add_audio_layer=add_audio_layer,
686
+ audio_condition_method=audio_condition_method,
687
+ )
688
+ )
689
+ audio_attentions.append(
690
+ Transformer3DModel(
691
+ attn_num_head_channels,
692
+ out_channels // attn_num_head_channels,
693
+ in_channels=out_channels,
694
+ num_layers=1,
695
+ cross_attention_dim=cross_attention_dim,
696
+ norm_num_groups=resnet_groups,
697
+ use_linear_projection=use_linear_projection,
698
+ only_cross_attention=only_cross_attention,
699
+ upcast_attention=upcast_attention,
700
+ use_motion_module=use_motion_module,
701
+ unet_use_cross_frame_attention=unet_use_cross_frame_attention,
702
+ unet_use_temporal_attention=unet_use_temporal_attention,
703
+ add_audio_layer=add_audio_layer,
704
+ audio_condition_method=audio_condition_method,
705
+ custom_audio_layer=True,
706
+ )
707
+ if custom_audio_layer
708
+ else None
709
+ )
710
+ motion_modules.append(
711
+ get_motion_module(
712
+ in_channels=out_channels,
713
+ motion_module_type=motion_module_type,
714
+ motion_module_kwargs=motion_module_kwargs,
715
+ )
716
+ if use_motion_module
717
+ else None
718
+ )
719
+
720
+ self.attentions = nn.ModuleList(attentions)
721
+ self.audio_attentions = nn.ModuleList(audio_attentions)
722
+ self.resnets = nn.ModuleList(resnets)
723
+ self.motion_modules = nn.ModuleList(motion_modules)
724
+
725
+ if add_upsample:
726
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
727
+ else:
728
+ self.upsamplers = None
729
+
730
+ self.gradient_checkpointing = False
731
+
732
+ def forward(
733
+ self,
734
+ hidden_states,
735
+ res_hidden_states_tuple,
736
+ temb=None,
737
+ encoder_hidden_states=None,
738
+ upsample_size=None,
739
+ attention_mask=None,
740
+ ):
741
+ for resnet, attn, audio_attn, motion_module in zip(
742
+ self.resnets, self.attentions, self.audio_attentions, self.motion_modules
743
+ ):
744
+ # pop res hidden states
745
+ res_hidden_states = res_hidden_states_tuple[-1]
746
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
747
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
748
+
749
+ if self.training and self.gradient_checkpointing:
750
+
751
+ def create_custom_forward(module, return_dict=None):
752
+ def custom_forward(*inputs):
753
+ if return_dict is not None:
754
+ return module(*inputs, return_dict=return_dict)
755
+ else:
756
+ return module(*inputs)
757
+
758
+ return custom_forward
759
+
760
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
761
+ hidden_states = torch.utils.checkpoint.checkpoint(
762
+ create_custom_forward(attn, return_dict=False),
763
+ hidden_states,
764
+ encoder_hidden_states,
765
+ )[0]
766
+ if motion_module is not None:
767
+ hidden_states = torch.utils.checkpoint.checkpoint(
768
+ create_custom_forward(motion_module),
769
+ hidden_states.requires_grad_(),
770
+ temb,
771
+ encoder_hidden_states,
772
+ )
773
+
774
+ else:
775
+ hidden_states = resnet(hidden_states, temb)
776
+ hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
777
+ hidden_states = (
778
+ audio_attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
779
+ if audio_attn is not None
780
+ else hidden_states
781
+ )
782
+
783
+ # add motion module
784
+ hidden_states = (
785
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
786
+ if motion_module is not None
787
+ else hidden_states
788
+ )
789
+
790
+ if self.upsamplers is not None:
791
+ for upsampler in self.upsamplers:
792
+ hidden_states = upsampler(hidden_states, upsample_size)
793
+
794
+ return hidden_states
795
+
796
+
797
+ class UpBlock3D(nn.Module):
798
+ def __init__(
799
+ self,
800
+ in_channels: int,
801
+ prev_output_channel: int,
802
+ out_channels: int,
803
+ temb_channels: int,
804
+ dropout: float = 0.0,
805
+ num_layers: int = 1,
806
+ resnet_eps: float = 1e-6,
807
+ resnet_time_scale_shift: str = "default",
808
+ resnet_act_fn: str = "swish",
809
+ resnet_groups: int = 32,
810
+ resnet_pre_norm: bool = True,
811
+ output_scale_factor=1.0,
812
+ add_upsample=True,
813
+ use_inflated_groupnorm=False,
814
+ use_motion_module=None,
815
+ motion_module_type=None,
816
+ motion_module_kwargs=None,
817
+ ):
818
+ super().__init__()
819
+ resnets = []
820
+ motion_modules = []
821
+
822
+ for i in range(num_layers):
823
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
824
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
825
+
826
+ resnets.append(
827
+ ResnetBlock3D(
828
+ in_channels=resnet_in_channels + res_skip_channels,
829
+ out_channels=out_channels,
830
+ temb_channels=temb_channels,
831
+ eps=resnet_eps,
832
+ groups=resnet_groups,
833
+ dropout=dropout,
834
+ time_embedding_norm=resnet_time_scale_shift,
835
+ non_linearity=resnet_act_fn,
836
+ output_scale_factor=output_scale_factor,
837
+ pre_norm=resnet_pre_norm,
838
+ use_inflated_groupnorm=use_inflated_groupnorm,
839
+ )
840
+ )
841
+ motion_modules.append(
842
+ get_motion_module(
843
+ in_channels=out_channels,
844
+ motion_module_type=motion_module_type,
845
+ motion_module_kwargs=motion_module_kwargs,
846
+ )
847
+ if use_motion_module
848
+ else None
849
+ )
850
+
851
+ self.resnets = nn.ModuleList(resnets)
852
+ self.motion_modules = nn.ModuleList(motion_modules)
853
+
854
+ if add_upsample:
855
+ self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
856
+ else:
857
+ self.upsamplers = None
858
+
859
+ self.gradient_checkpointing = False
860
+
861
+ def forward(
862
+ self,
863
+ hidden_states,
864
+ res_hidden_states_tuple,
865
+ temb=None,
866
+ upsample_size=None,
867
+ encoder_hidden_states=None,
868
+ ):
869
+ for resnet, motion_module in zip(self.resnets, self.motion_modules):
870
+ # pop res hidden states
871
+ res_hidden_states = res_hidden_states_tuple[-1]
872
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
873
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
874
+
875
+ if self.training and self.gradient_checkpointing:
876
+
877
+ def create_custom_forward(module):
878
+ def custom_forward(*inputs):
879
+ return module(*inputs)
880
+
881
+ return custom_forward
882
+
883
+ hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
884
+ if motion_module is not None:
885
+ hidden_states = torch.utils.checkpoint.checkpoint(
886
+ create_custom_forward(motion_module),
887
+ hidden_states.requires_grad_(),
888
+ temb,
889
+ encoder_hidden_states,
890
+ )
891
+ else:
892
+ hidden_states = resnet(hidden_states, temb)
893
+ hidden_states = (
894
+ motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states)
895
+ if motion_module is not None
896
+ else hidden_states
897
+ )
898
+
899
+ if self.upsamplers is not None:
900
+ for upsampler in self.upsamplers:
901
+ hidden_states = upsampler(hidden_states, upsample_size)
902
+
903
+ return hidden_states
latentsync/models/utils.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ def zero_module(module):
16
+ # Zero out the parameters of a module and return it.
17
+ for p in module.parameters():
18
+ p.detach().zero_()
19
+ return module
latentsync/pipelines/lipsync_pipeline.py ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/pipelines/pipeline_animation.py
2
+
3
+ import inspect
4
+ import os
5
+ import shutil
6
+ from typing import Callable, List, Optional, Union
7
+ import subprocess
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torchvision
12
+
13
+ from diffusers.utils import is_accelerate_available
14
+ from packaging import version
15
+
16
+ from diffusers.configuration_utils import FrozenDict
17
+ from diffusers.models import AutoencoderKL
18
+ from diffusers.pipeline_utils import DiffusionPipeline
19
+ from diffusers.schedulers import (
20
+ DDIMScheduler,
21
+ DPMSolverMultistepScheduler,
22
+ EulerAncestralDiscreteScheduler,
23
+ EulerDiscreteScheduler,
24
+ LMSDiscreteScheduler,
25
+ PNDMScheduler,
26
+ )
27
+ from diffusers.utils import deprecate, logging
28
+
29
+ from einops import rearrange
30
+
31
+ from ..models.unet import UNet3DConditionModel
32
+ from ..utils.image_processor import ImageProcessor
33
+ from ..utils.util import read_video, read_audio, write_video
34
+ from ..whisper.audio2feature import Audio2Feature
35
+ import tqdm
36
+ import soundfile as sf
37
+
38
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
+
40
+
41
+ class LipsyncPipeline(DiffusionPipeline):
42
+ _optional_components = []
43
+
44
+ def __init__(
45
+ self,
46
+ vae: AutoencoderKL,
47
+ audio_encoder: Audio2Feature,
48
+ unet: UNet3DConditionModel,
49
+ scheduler: Union[
50
+ DDIMScheduler,
51
+ PNDMScheduler,
52
+ LMSDiscreteScheduler,
53
+ EulerDiscreteScheduler,
54
+ EulerAncestralDiscreteScheduler,
55
+ DPMSolverMultistepScheduler,
56
+ ],
57
+ ):
58
+ super().__init__()
59
+
60
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
61
+ deprecation_message = (
62
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
63
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
64
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
65
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
66
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
67
+ " file"
68
+ )
69
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
70
+ new_config = dict(scheduler.config)
71
+ new_config["steps_offset"] = 1
72
+ scheduler._internal_dict = FrozenDict(new_config)
73
+
74
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
75
+ deprecation_message = (
76
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
77
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
78
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
79
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
80
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
81
+ )
82
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
83
+ new_config = dict(scheduler.config)
84
+ new_config["clip_sample"] = False
85
+ scheduler._internal_dict = FrozenDict(new_config)
86
+
87
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
88
+ version.parse(unet.config._diffusers_version).base_version
89
+ ) < version.parse("0.9.0.dev0")
90
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
91
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
92
+ deprecation_message = (
93
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
94
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
95
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
96
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
97
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
98
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
99
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
100
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
101
+ " the `unet/config.json` file"
102
+ )
103
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
104
+ new_config = dict(unet.config)
105
+ new_config["sample_size"] = 64
106
+ unet._internal_dict = FrozenDict(new_config)
107
+
108
+ self.register_modules(
109
+ vae=vae,
110
+ audio_encoder=audio_encoder,
111
+ unet=unet,
112
+ scheduler=scheduler,
113
+ )
114
+
115
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
116
+
117
+ self.set_progress_bar_config(desc="Steps")
118
+
119
+ def enable_vae_slicing(self):
120
+ self.vae.enable_slicing()
121
+
122
+ def disable_vae_slicing(self):
123
+ self.vae.disable_slicing()
124
+
125
+ def enable_sequential_cpu_offload(self, gpu_id=0):
126
+ if is_accelerate_available():
127
+ from accelerate import cpu_offload
128
+ else:
129
+ raise ImportError("Please install accelerate via `pip install accelerate`")
130
+
131
+ device = torch.device(f"cuda:{gpu_id}")
132
+
133
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
134
+ if cpu_offloaded_model is not None:
135
+ cpu_offload(cpu_offloaded_model, device)
136
+
137
+ @property
138
+ def _execution_device(self):
139
+ if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
140
+ return self.device
141
+ for module in self.unet.modules():
142
+ if (
143
+ hasattr(module, "_hf_hook")
144
+ and hasattr(module._hf_hook, "execution_device")
145
+ and module._hf_hook.execution_device is not None
146
+ ):
147
+ return torch.device(module._hf_hook.execution_device)
148
+ return self.device
149
+
150
+ def decode_latents(self, latents):
151
+ latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
152
+ latents = rearrange(latents, "b c f h w -> (b f) c h w")
153
+ decoded_latents = self.vae.decode(latents).sample
154
+ return decoded_latents
155
+
156
+ def prepare_extra_step_kwargs(self, generator, eta):
157
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
158
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
159
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
160
+ # and should be between [0, 1]
161
+
162
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
163
+ extra_step_kwargs = {}
164
+ if accepts_eta:
165
+ extra_step_kwargs["eta"] = eta
166
+
167
+ # check if the scheduler accepts generator
168
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
169
+ if accepts_generator:
170
+ extra_step_kwargs["generator"] = generator
171
+ return extra_step_kwargs
172
+
173
+ def check_inputs(self, height, width, callback_steps):
174
+ assert height == width, "Height and width must be equal"
175
+
176
+ if height % 8 != 0 or width % 8 != 0:
177
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
178
+
179
+ if (callback_steps is None) or (
180
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
181
+ ):
182
+ raise ValueError(
183
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
184
+ f" {type(callback_steps)}."
185
+ )
186
+
187
+ def prepare_latents(self, batch_size, num_frames, num_channels_latents, height, width, dtype, device, generator):
188
+ shape = (
189
+ batch_size,
190
+ num_channels_latents,
191
+ 1,
192
+ height // self.vae_scale_factor,
193
+ width // self.vae_scale_factor,
194
+ )
195
+ rand_device = "cpu" if device.type == "mps" else device
196
+ latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
197
+ latents = latents.repeat(1, 1, num_frames, 1, 1)
198
+
199
+ # scale the initial noise by the standard deviation required by the scheduler
200
+ latents = latents * self.scheduler.init_noise_sigma
201
+ return latents
202
+
203
+ def prepare_mask_latents(
204
+ self, mask, masked_image, height, width, dtype, device, generator, do_classifier_free_guidance
205
+ ):
206
+ # resize the mask to latents shape as we concatenate the mask to the latents
207
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
208
+ # and half precision
209
+ mask = torch.nn.functional.interpolate(
210
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
211
+ )
212
+ masked_image = masked_image.to(device=device, dtype=dtype)
213
+
214
+ # encode the mask image into latents space so we can concatenate it to the latents
215
+ masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
216
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
217
+
218
+ # aligning device to prevent device errors when concating it with the latent model input
219
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
220
+ mask = mask.to(device=device, dtype=dtype)
221
+
222
+ # assume batch size = 1
223
+ mask = rearrange(mask, "f c h w -> 1 c f h w")
224
+ masked_image_latents = rearrange(masked_image_latents, "f c h w -> 1 c f h w")
225
+
226
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
227
+ masked_image_latents = (
228
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
229
+ )
230
+ return mask, masked_image_latents
231
+
232
+ def prepare_image_latents(self, images, device, dtype, generator, do_classifier_free_guidance):
233
+ images = images.to(device=device, dtype=dtype)
234
+ image_latents = self.vae.encode(images).latent_dist.sample(generator=generator)
235
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
236
+ image_latents = rearrange(image_latents, "f c h w -> 1 c f h w")
237
+ image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
238
+
239
+ return image_latents
240
+
241
+ def set_progress_bar_config(self, **kwargs):
242
+ if not hasattr(self, "_progress_bar_config"):
243
+ self._progress_bar_config = {}
244
+ self._progress_bar_config.update(kwargs)
245
+
246
+ @staticmethod
247
+ def paste_surrounding_pixels_back(decoded_latents, pixel_values, masks, device, weight_dtype):
248
+ # Paste the surrounding pixels back, because we only want to change the mouth region
249
+ pixel_values = pixel_values.to(device=device, dtype=weight_dtype)
250
+ masks = masks.to(device=device, dtype=weight_dtype)
251
+ combined_pixel_values = decoded_latents * masks + pixel_values * (1 - masks)
252
+ return combined_pixel_values
253
+
254
+ @staticmethod
255
+ def pixel_values_to_images(pixel_values: torch.Tensor):
256
+ pixel_values = rearrange(pixel_values, "f c h w -> f h w c")
257
+ pixel_values = (pixel_values / 2 + 0.5).clamp(0, 1)
258
+ images = (pixel_values * 255).to(torch.uint8)
259
+ images = images.cpu().numpy()
260
+ return images
261
+
262
+ def affine_transform_video(self, video_path):
263
+ video_frames = read_video(video_path, use_decord=False)
264
+ faces = []
265
+ boxes = []
266
+ affine_matrices = []
267
+ print(f"Affine transforming {len(video_frames)} faces...")
268
+ for frame in tqdm.tqdm(video_frames):
269
+ face, box, affine_matrix = self.image_processor.affine_transform(frame)
270
+ faces.append(face)
271
+ boxes.append(box)
272
+ affine_matrices.append(affine_matrix)
273
+
274
+ faces = torch.stack(faces)
275
+ return faces, video_frames, boxes, affine_matrices
276
+
277
+ def restore_video(self, faces, video_frames, boxes, affine_matrices):
278
+ video_frames = video_frames[: faces.shape[0]]
279
+ out_frames = []
280
+ for index, face in enumerate(faces):
281
+ x1, y1, x2, y2 = boxes[index]
282
+ height = int(y2 - y1)
283
+ width = int(x2 - x1)
284
+ face = torchvision.transforms.functional.resize(face, size=(height, width), antialias=True)
285
+ face = rearrange(face, "c h w -> h w c")
286
+ face = (face / 2 + 0.5).clamp(0, 1)
287
+ face = (face * 255).to(torch.uint8).cpu().numpy()
288
+ out_frame = self.image_processor.restorer.restore_img(video_frames[index], face, affine_matrices[index])
289
+ out_frames.append(out_frame)
290
+ return np.stack(out_frames, axis=0)
291
+
292
+ @torch.no_grad()
293
+ def __call__(
294
+ self,
295
+ video_path: str,
296
+ audio_path: str,
297
+ video_out_path: str,
298
+ video_mask_path: str = None,
299
+ num_frames: int = 16,
300
+ video_fps: int = 25,
301
+ audio_sample_rate: int = 16000,
302
+ height: Optional[int] = None,
303
+ width: Optional[int] = None,
304
+ num_inference_steps: int = 20,
305
+ guidance_scale: float = 1.5,
306
+ weight_dtype: Optional[torch.dtype] = torch.float16,
307
+ eta: float = 0.0,
308
+ mask: str = "fix_mask",
309
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
310
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
311
+ callback_steps: Optional[int] = 1,
312
+ **kwargs,
313
+ ):
314
+ is_train = self.unet.training
315
+ self.unet.eval()
316
+
317
+ # 0. Define call parameters
318
+ batch_size = 1
319
+ device = self._execution_device
320
+ self.image_processor = ImageProcessor(height, mask=mask, device="cuda")
321
+ self.set_progress_bar_config(desc=f"Sample frames: {num_frames}")
322
+
323
+ video_frames, original_video_frames, boxes, affine_matrices = self.affine_transform_video(video_path)
324
+ audio_samples = read_audio(audio_path)
325
+
326
+ # 1. Default height and width to unet
327
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
328
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
329
+
330
+ # 2. Check inputs
331
+ self.check_inputs(height, width, callback_steps)
332
+
333
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
334
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
335
+ # corresponds to doing no classifier free guidance.
336
+ do_classifier_free_guidance = guidance_scale > 1.0
337
+
338
+ # 3. set timesteps
339
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
340
+ timesteps = self.scheduler.timesteps
341
+
342
+ # 4. Prepare extra step kwargs.
343
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
344
+
345
+ self.video_fps = video_fps
346
+
347
+ if self.unet.add_audio_layer:
348
+ whisper_feature = self.audio_encoder.audio2feat(audio_path)
349
+ whisper_chunks = self.audio_encoder.feature2chunks(feature_array=whisper_feature, fps=video_fps)
350
+
351
+ num_inferences = min(len(video_frames), len(whisper_chunks)) // num_frames
352
+ else:
353
+ num_inferences = len(video_frames) // num_frames
354
+
355
+ synced_video_frames = []
356
+ masked_video_frames = []
357
+
358
+ num_channels_latents = self.vae.config.latent_channels
359
+
360
+ # Prepare latent variables
361
+ all_latents = self.prepare_latents(
362
+ batch_size,
363
+ num_frames * num_inferences,
364
+ num_channels_latents,
365
+ height,
366
+ width,
367
+ weight_dtype,
368
+ device,
369
+ generator,
370
+ )
371
+
372
+ for i in tqdm.tqdm(range(num_inferences), desc="Doing inference..."):
373
+ if self.unet.add_audio_layer:
374
+ audio_embeds = torch.stack(whisper_chunks[i * num_frames : (i + 1) * num_frames])
375
+ audio_embeds = audio_embeds.to(device, dtype=weight_dtype)
376
+ if do_classifier_free_guidance:
377
+ empty_audio_embeds = torch.zeros_like(audio_embeds)
378
+ audio_embeds = torch.cat([empty_audio_embeds, audio_embeds])
379
+ else:
380
+ audio_embeds = None
381
+ inference_video_frames = video_frames[i * num_frames : (i + 1) * num_frames]
382
+ latents = all_latents[:, :, i * num_frames : (i + 1) * num_frames]
383
+ pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images(
384
+ inference_video_frames, affine_transform=False
385
+ )
386
+
387
+ # 7. Prepare mask latent variables
388
+ mask_latents, masked_image_latents = self.prepare_mask_latents(
389
+ masks,
390
+ masked_pixel_values,
391
+ height,
392
+ width,
393
+ weight_dtype,
394
+ device,
395
+ generator,
396
+ do_classifier_free_guidance,
397
+ )
398
+
399
+ # 8. Prepare image latents
400
+ image_latents = self.prepare_image_latents(
401
+ pixel_values,
402
+ device,
403
+ weight_dtype,
404
+ generator,
405
+ do_classifier_free_guidance,
406
+ )
407
+
408
+ # 9. Denoising loop
409
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
410
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
411
+ for j, t in enumerate(timesteps):
412
+ # expand the latents if we are doing classifier free guidance
413
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
414
+
415
+ # concat latents, mask, masked_image_latents in the channel dimension
416
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
417
+ latent_model_input = torch.cat(
418
+ [latent_model_input, mask_latents, masked_image_latents, image_latents], dim=1
419
+ )
420
+
421
+ # predict the noise residual
422
+ noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=audio_embeds).sample
423
+
424
+ # perform guidance
425
+ if do_classifier_free_guidance:
426
+ noise_pred_uncond, noise_pred_audio = noise_pred.chunk(2)
427
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_audio - noise_pred_uncond)
428
+
429
+ # compute the previous noisy sample x_t -> x_t-1
430
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
431
+
432
+ # call the callback, if provided
433
+ if j == len(timesteps) - 1 or ((j + 1) > num_warmup_steps and (j + 1) % self.scheduler.order == 0):
434
+ progress_bar.update()
435
+ if callback is not None and j % callback_steps == 0:
436
+ callback(j, t, latents)
437
+
438
+ # Recover the pixel values
439
+ decoded_latents = self.decode_latents(latents)
440
+ decoded_latents = self.paste_surrounding_pixels_back(
441
+ decoded_latents, pixel_values, 1 - masks, device, weight_dtype
442
+ )
443
+ synced_video_frames.append(decoded_latents)
444
+ masked_video_frames.append(masked_pixel_values)
445
+
446
+ synced_video_frames = self.restore_video(
447
+ torch.cat(synced_video_frames), original_video_frames, boxes, affine_matrices
448
+ )
449
+ masked_video_frames = self.restore_video(
450
+ torch.cat(masked_video_frames), original_video_frames, boxes, affine_matrices
451
+ )
452
+
453
+ audio_samples_remain_length = int(synced_video_frames.shape[0] / video_fps * audio_sample_rate)
454
+ audio_samples = audio_samples[:audio_samples_remain_length].cpu().numpy()
455
+
456
+ if is_train:
457
+ self.unet.train()
458
+
459
+ temp_dir = "temp"
460
+ if os.path.exists(temp_dir):
461
+ shutil.rmtree(temp_dir)
462
+ os.makedirs(temp_dir, exist_ok=True)
463
+
464
+ write_video(os.path.join(temp_dir, "video.mp4"), synced_video_frames, fps=25)
465
+ # write_video(video_mask_path, masked_video_frames, fps=25)
466
+
467
+ sf.write(os.path.join(temp_dir, "audio.wav"), audio_samples, audio_sample_rate)
468
+
469
+ command = f"ffmpeg -y -loglevel error -nostdin -i {os.path.join(temp_dir, 'video.mp4')} -i {os.path.join(temp_dir, 'audio.wav')} -c:v libx264 -c:a aac -q:v 0 -q:a 0 {video_out_path}"
470
+ subprocess.run(command, shell=True)
latentsync/trepa/__init__.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import torch.nn.functional as F
17
+ import torch.nn as nn
18
+ from einops import rearrange
19
+ from .third_party.VideoMAEv2.utils import load_videomae_model
20
+
21
+
22
+ class TREPALoss:
23
+ def __init__(
24
+ self,
25
+ device="cuda",
26
+ ckpt_path="/mnt/bn/maliva-gen-ai-v2/chunyu.li/checkpoints/vit_g_hybrid_pt_1200e_ssv2_ft.pth",
27
+ ):
28
+ self.model = load_videomae_model(device, ckpt_path).eval().to(dtype=torch.float16)
29
+ self.model.requires_grad_(False)
30
+ self.bce_loss = nn.BCELoss()
31
+
32
+ def __call__(self, videos_fake, videos_real, loss_type="mse"):
33
+ batch_size = videos_fake.shape[0]
34
+ num_frames = videos_fake.shape[2]
35
+ videos_fake = rearrange(videos_fake.clone(), "b c f h w -> (b f) c h w")
36
+ videos_real = rearrange(videos_real.clone(), "b c f h w -> (b f) c h w")
37
+
38
+ videos_fake = F.interpolate(videos_fake, size=(224, 224), mode="bilinear")
39
+ videos_real = F.interpolate(videos_real, size=(224, 224), mode="bilinear")
40
+
41
+ videos_fake = rearrange(videos_fake, "(b f) c h w -> b c f h w", f=num_frames)
42
+ videos_real = rearrange(videos_real, "(b f) c h w -> b c f h w", f=num_frames)
43
+
44
+ # Because input pixel range is [-1, 1], and model expects pixel range to be [0, 1]
45
+ videos_fake = (videos_fake / 2 + 0.5).clamp(0, 1)
46
+ videos_real = (videos_real / 2 + 0.5).clamp(0, 1)
47
+
48
+ feats_fake = self.model.forward_features(videos_fake)
49
+ feats_real = self.model.forward_features(videos_real)
50
+
51
+ feats_fake = F.normalize(feats_fake, p=2, dim=1)
52
+ feats_real = F.normalize(feats_real, p=2, dim=1)
53
+
54
+ return F.mse_loss(feats_fake, feats_real)
55
+
56
+
57
+ if __name__ == "__main__":
58
+ # input shape: (b, c, f, h, w)
59
+ videos_fake = torch.randn(2, 3, 16, 256, 256, requires_grad=True).to(device="cuda", dtype=torch.float16)
60
+ videos_real = torch.randn(2, 3, 16, 256, 256, requires_grad=True).to(device="cuda", dtype=torch.float16)
61
+
62
+ trepa_loss = TREPALoss(device="cuda")
63
+ loss = trepa_loss(videos_fake, videos_real)
64
+ print(loss)
latentsync/trepa/third_party/VideoMAEv2/__init__.py ADDED
File without changes