# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mediapipe as mp import cv2 from decord import VideoReader from einops import rearrange import os import numpy as np import torch import tqdm from eval.fvd import compute_our_fvd class FVD: def __init__(self, resolution=(224, 224)): self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5) self.resolution = resolution def detect_face(self, image): height, width = image.shape[:2] # Process the image and detect faces. results = self.face_detector.process(image) if not results.detections: # Face not detected raise Exception("Face not detected") detection = results.detections[0] # Only use the first face in the image bounding_box = detection.location_data.relative_bounding_box xmin = int(bounding_box.xmin * width) ymin = int(bounding_box.ymin * height) face_width = int(bounding_box.width * width) face_height = int(bounding_box.height * height) # Crop the image to the bounding box. xmin = max(0, xmin) ymin = max(0, ymin) xmax = min(width, xmin + face_width) ymax = min(height, ymin + face_height) image = image[ymin:ymax, xmin:xmax] return image def detect_video(self, video_path, real: bool = True): vr = VideoReader(video_path) video_frames = vr[20:36].asnumpy() # Use one frame per second vr.seek(0) # avoid memory leak faces = [] for frame in video_frames: face = self.detect_face(frame) face = cv2.resize(face, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_AREA) faces.append(face) if len(faces) != 16: return None faces = np.stack(faces, axis=0) # (f, h, w, c) faces = torch.from_numpy(faces) return faces def eval_fvd(real_videos_dir, fake_videos_dir): fvd = FVD() real_features_list = [] fake_features_list = [] for file in tqdm.tqdm(os.listdir(fake_videos_dir)): if file.endswith(".mp4"): real_video_path = os.path.join(real_videos_dir, file.replace("_out.mp4", ".mp4")) fake_video_path = os.path.join(fake_videos_dir, file) real_features = fvd.detect_video(real_video_path, real=True) fake_features = fvd.detect_video(fake_video_path, real=False) if real_features is None or fake_features is None: continue real_features_list.append(real_features) fake_features_list.append(fake_features) real_features = torch.stack(real_features_list) / 255.0 fake_features = torch.stack(fake_features_list) / 255.0 print(compute_our_fvd(real_features, fake_features, device="cpu")) if __name__ == "__main__": real_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/cross" fake_videos_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/segmented/latentsync_cross" eval_fvd(real_videos_dir, fake_videos_dir)