Spaces:
Running
on
A100
Running
on
A100
Commit
·
4a09d4f
1
Parent(s):
6db905d
Create cog_sdxl_dataset_and_utils.py
Browse files- cog_sdxl_dataset_and_utils.py +422 -0
cog_sdxl_dataset_and_utils.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset_and_utils.py file taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py
|
2 |
+
import os
|
3 |
+
from typing import Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import PIL
|
8 |
+
import torch
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
|
11 |
+
from PIL import Image
|
12 |
+
from safetensors import safe_open
|
13 |
+
from safetensors.torch import save_file
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
16 |
+
|
17 |
+
|
18 |
+
def prepare_image(
|
19 |
+
pil_image: PIL.Image.Image, w: int = 512, h: int = 512
|
20 |
+
) -> torch.Tensor:
|
21 |
+
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
|
22 |
+
arr = np.array(pil_image.convert("RGB"))
|
23 |
+
arr = arr.astype(np.float32) / 127.5 - 1
|
24 |
+
arr = np.transpose(arr, [2, 0, 1])
|
25 |
+
image = torch.from_numpy(arr).unsqueeze(0)
|
26 |
+
return image
|
27 |
+
|
28 |
+
|
29 |
+
def prepare_mask(
|
30 |
+
pil_image: PIL.Image.Image, w: int = 512, h: int = 512
|
31 |
+
) -> torch.Tensor:
|
32 |
+
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
|
33 |
+
arr = np.array(pil_image.convert("L"))
|
34 |
+
arr = arr.astype(np.float32) / 255.0
|
35 |
+
arr = np.expand_dims(arr, 0)
|
36 |
+
image = torch.from_numpy(arr).unsqueeze(0)
|
37 |
+
return image
|
38 |
+
|
39 |
+
|
40 |
+
class PreprocessedDataset(Dataset):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
csv_path: str,
|
44 |
+
tokenizer_1,
|
45 |
+
tokenizer_2,
|
46 |
+
vae_encoder,
|
47 |
+
text_encoder_1=None,
|
48 |
+
text_encoder_2=None,
|
49 |
+
do_cache: bool = False,
|
50 |
+
size: int = 512,
|
51 |
+
text_dropout: float = 0.0,
|
52 |
+
scale_vae_latents: bool = True,
|
53 |
+
substitute_caption_map: Dict[str, str] = {},
|
54 |
+
):
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.data = pd.read_csv(csv_path)
|
58 |
+
self.csv_path = csv_path
|
59 |
+
|
60 |
+
self.caption = self.data["caption"]
|
61 |
+
# make it lowercase
|
62 |
+
self.caption = self.caption.str.lower()
|
63 |
+
for key, value in substitute_caption_map.items():
|
64 |
+
self.caption = self.caption.str.replace(key.lower(), value)
|
65 |
+
|
66 |
+
self.image_path = self.data["image_path"]
|
67 |
+
|
68 |
+
if "mask_path" not in self.data.columns:
|
69 |
+
self.mask_path = None
|
70 |
+
else:
|
71 |
+
self.mask_path = self.data["mask_path"]
|
72 |
+
|
73 |
+
if text_encoder_1 is None:
|
74 |
+
self.return_text_embeddings = False
|
75 |
+
else:
|
76 |
+
self.text_encoder_1 = text_encoder_1
|
77 |
+
self.text_encoder_2 = text_encoder_2
|
78 |
+
self.return_text_embeddings = True
|
79 |
+
assert (
|
80 |
+
NotImplementedError
|
81 |
+
), "Preprocessing Text Encoder is not implemented yet"
|
82 |
+
|
83 |
+
self.tokenizer_1 = tokenizer_1
|
84 |
+
self.tokenizer_2 = tokenizer_2
|
85 |
+
|
86 |
+
self.vae_encoder = vae_encoder
|
87 |
+
self.scale_vae_latents = scale_vae_latents
|
88 |
+
self.text_dropout = text_dropout
|
89 |
+
|
90 |
+
self.size = size
|
91 |
+
|
92 |
+
if do_cache:
|
93 |
+
self.vae_latents = []
|
94 |
+
self.tokens_tuple = []
|
95 |
+
self.masks = []
|
96 |
+
|
97 |
+
self.do_cache = True
|
98 |
+
|
99 |
+
print("Captions to train on: ")
|
100 |
+
for idx in range(len(self.data)):
|
101 |
+
token, vae_latent, mask = self._process(idx)
|
102 |
+
self.vae_latents.append(vae_latent)
|
103 |
+
self.tokens_tuple.append(token)
|
104 |
+
self.masks.append(mask)
|
105 |
+
|
106 |
+
del self.vae_encoder
|
107 |
+
|
108 |
+
else:
|
109 |
+
self.do_cache = False
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def _process(
|
113 |
+
self, idx: int
|
114 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
115 |
+
image_path = self.image_path[idx]
|
116 |
+
image_path = os.path.join(os.path.dirname(self.csv_path), image_path)
|
117 |
+
|
118 |
+
image = PIL.Image.open(image_path).convert("RGB")
|
119 |
+
image = prepare_image(image, self.size, self.size).to(
|
120 |
+
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
121 |
+
)
|
122 |
+
|
123 |
+
caption = self.caption[idx]
|
124 |
+
|
125 |
+
print(caption)
|
126 |
+
|
127 |
+
# tokenizer_1
|
128 |
+
ti1 = self.tokenizer_1(
|
129 |
+
caption,
|
130 |
+
padding="max_length",
|
131 |
+
max_length=77,
|
132 |
+
truncation=True,
|
133 |
+
add_special_tokens=True,
|
134 |
+
return_tensors="pt",
|
135 |
+
).input_ids
|
136 |
+
|
137 |
+
ti2 = self.tokenizer_2(
|
138 |
+
caption,
|
139 |
+
padding="max_length",
|
140 |
+
max_length=77,
|
141 |
+
truncation=True,
|
142 |
+
add_special_tokens=True,
|
143 |
+
return_tensors="pt",
|
144 |
+
).input_ids
|
145 |
+
|
146 |
+
vae_latent = self.vae_encoder.encode(image).latent_dist.sample()
|
147 |
+
|
148 |
+
if self.scale_vae_latents:
|
149 |
+
vae_latent = vae_latent * self.vae_encoder.config.scaling_factor
|
150 |
+
|
151 |
+
if self.mask_path is None:
|
152 |
+
mask = torch.ones_like(
|
153 |
+
vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
154 |
+
)
|
155 |
+
|
156 |
+
else:
|
157 |
+
mask_path = self.mask_path[idx]
|
158 |
+
mask_path = os.path.join(os.path.dirname(self.csv_path), mask_path)
|
159 |
+
|
160 |
+
mask = PIL.Image.open(mask_path)
|
161 |
+
mask = prepare_mask(mask, self.size, self.size).to(
|
162 |
+
dtype=self.vae_encoder.dtype, device=self.vae_encoder.device
|
163 |
+
)
|
164 |
+
|
165 |
+
mask = torch.nn.functional.interpolate(
|
166 |
+
mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest"
|
167 |
+
)
|
168 |
+
mask = mask.repeat(1, vae_latent.shape[1], 1, 1)
|
169 |
+
|
170 |
+
assert len(mask.shape) == 4 and len(vae_latent.shape) == 4
|
171 |
+
|
172 |
+
return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze()
|
173 |
+
|
174 |
+
def __len__(self) -> int:
|
175 |
+
return len(self.data)
|
176 |
+
|
177 |
+
def atidx(
|
178 |
+
self, idx: int
|
179 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
180 |
+
if self.do_cache:
|
181 |
+
return self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx]
|
182 |
+
else:
|
183 |
+
return self._process(idx)
|
184 |
+
|
185 |
+
def __getitem__(
|
186 |
+
self, idx: int
|
187 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
|
188 |
+
token, vae_latent, mask = self.atidx(idx)
|
189 |
+
return token, vae_latent, mask
|
190 |
+
|
191 |
+
|
192 |
+
def import_model_class_from_model_name_or_path(
|
193 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
|
194 |
+
):
|
195 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
196 |
+
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
|
197 |
+
)
|
198 |
+
model_class = text_encoder_config.architectures[0]
|
199 |
+
|
200 |
+
if model_class == "CLIPTextModel":
|
201 |
+
from transformers import CLIPTextModel
|
202 |
+
|
203 |
+
return CLIPTextModel
|
204 |
+
elif model_class == "CLIPTextModelWithProjection":
|
205 |
+
from transformers import CLIPTextModelWithProjection
|
206 |
+
|
207 |
+
return CLIPTextModelWithProjection
|
208 |
+
else:
|
209 |
+
raise ValueError(f"{model_class} is not supported.")
|
210 |
+
|
211 |
+
|
212 |
+
def load_models(pretrained_model_name_or_path, revision, device, weight_dtype):
|
213 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
214 |
+
pretrained_model_name_or_path,
|
215 |
+
subfolder="tokenizer",
|
216 |
+
revision=revision,
|
217 |
+
use_fast=False,
|
218 |
+
)
|
219 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
220 |
+
pretrained_model_name_or_path,
|
221 |
+
subfolder="tokenizer_2",
|
222 |
+
revision=revision,
|
223 |
+
use_fast=False,
|
224 |
+
)
|
225 |
+
|
226 |
+
# Load scheduler and models
|
227 |
+
noise_scheduler = DDPMScheduler.from_pretrained(
|
228 |
+
pretrained_model_name_or_path, subfolder="scheduler"
|
229 |
+
)
|
230 |
+
# import correct text encoder classes
|
231 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(
|
232 |
+
pretrained_model_name_or_path, revision
|
233 |
+
)
|
234 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(
|
235 |
+
pretrained_model_name_or_path, revision, subfolder="text_encoder_2"
|
236 |
+
)
|
237 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
238 |
+
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
239 |
+
)
|
240 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
241 |
+
pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision
|
242 |
+
)
|
243 |
+
|
244 |
+
vae = AutoencoderKL.from_pretrained(
|
245 |
+
pretrained_model_name_or_path, subfolder="vae", revision=revision
|
246 |
+
)
|
247 |
+
unet = UNet2DConditionModel.from_pretrained(
|
248 |
+
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
249 |
+
)
|
250 |
+
|
251 |
+
vae.requires_grad_(False)
|
252 |
+
text_encoder_one.requires_grad_(False)
|
253 |
+
text_encoder_two.requires_grad_(False)
|
254 |
+
|
255 |
+
unet.to(device, dtype=weight_dtype)
|
256 |
+
vae.to(device, dtype=torch.float32)
|
257 |
+
text_encoder_one.to(device, dtype=weight_dtype)
|
258 |
+
text_encoder_two.to(device, dtype=weight_dtype)
|
259 |
+
|
260 |
+
return (
|
261 |
+
tokenizer_one,
|
262 |
+
tokenizer_two,
|
263 |
+
noise_scheduler,
|
264 |
+
text_encoder_one,
|
265 |
+
text_encoder_two,
|
266 |
+
vae,
|
267 |
+
unet,
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]:
|
272 |
+
"""
|
273 |
+
Returns:
|
274 |
+
a state dict containing just the attention processor parameters.
|
275 |
+
"""
|
276 |
+
attn_processors = unet.attn_processors
|
277 |
+
|
278 |
+
attn_processors_state_dict = {}
|
279 |
+
|
280 |
+
for attn_processor_key, attn_processor in attn_processors.items():
|
281 |
+
for parameter_key, parameter in attn_processor.state_dict().items():
|
282 |
+
attn_processors_state_dict[
|
283 |
+
f"{attn_processor_key}.{parameter_key}"
|
284 |
+
] = parameter
|
285 |
+
|
286 |
+
return attn_processors_state_dict
|
287 |
+
|
288 |
+
|
289 |
+
class TokenEmbeddingsHandler:
|
290 |
+
def __init__(self, text_encoders, tokenizers):
|
291 |
+
self.text_encoders = text_encoders
|
292 |
+
self.tokenizers = tokenizers
|
293 |
+
|
294 |
+
self.train_ids: Optional[torch.Tensor] = None
|
295 |
+
self.inserting_toks: Optional[List[str]] = None
|
296 |
+
self.embeddings_settings = {}
|
297 |
+
|
298 |
+
def initialize_new_tokens(self, inserting_toks: List[str]):
|
299 |
+
idx = 0
|
300 |
+
for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
|
301 |
+
assert isinstance(
|
302 |
+
inserting_toks, list
|
303 |
+
), "inserting_toks should be a list of strings."
|
304 |
+
assert all(
|
305 |
+
isinstance(tok, str) for tok in inserting_toks
|
306 |
+
), "All elements in inserting_toks should be strings."
|
307 |
+
|
308 |
+
self.inserting_toks = inserting_toks
|
309 |
+
special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
|
310 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
311 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
312 |
+
|
313 |
+
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
|
314 |
+
|
315 |
+
# random initialization of new tokens
|
316 |
+
|
317 |
+
std_token_embedding = (
|
318 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data.std()
|
319 |
+
)
|
320 |
+
|
321 |
+
print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}")
|
322 |
+
|
323 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
324 |
+
self.train_ids
|
325 |
+
] = (
|
326 |
+
torch.randn(
|
327 |
+
len(self.train_ids), text_encoder.text_model.config.hidden_size
|
328 |
+
)
|
329 |
+
.to(device=self.device)
|
330 |
+
.to(dtype=self.dtype)
|
331 |
+
* std_token_embedding
|
332 |
+
)
|
333 |
+
self.embeddings_settings[
|
334 |
+
f"original_embeddings_{idx}"
|
335 |
+
] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone()
|
336 |
+
self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding
|
337 |
+
|
338 |
+
inu = torch.ones((len(tokenizer),), dtype=torch.bool)
|
339 |
+
inu[self.train_ids] = False
|
340 |
+
|
341 |
+
self.embeddings_settings[f"index_no_updates_{idx}"] = inu
|
342 |
+
|
343 |
+
print(self.embeddings_settings[f"index_no_updates_{idx}"].shape)
|
344 |
+
|
345 |
+
idx += 1
|
346 |
+
|
347 |
+
def save_embeddings(self, file_path: str):
|
348 |
+
assert (
|
349 |
+
self.train_ids is not None
|
350 |
+
), "Initialize new tokens before saving embeddings."
|
351 |
+
tensors = {}
|
352 |
+
for idx, text_encoder in enumerate(self.text_encoders):
|
353 |
+
assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[
|
354 |
+
0
|
355 |
+
] == len(self.tokenizers[0]), "Tokenizers should be the same."
|
356 |
+
new_token_embeddings = (
|
357 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
358 |
+
self.train_ids
|
359 |
+
]
|
360 |
+
)
|
361 |
+
tensors[f"text_encoders_{idx}"] = new_token_embeddings
|
362 |
+
|
363 |
+
save_file(tensors, file_path)
|
364 |
+
|
365 |
+
@property
|
366 |
+
def dtype(self):
|
367 |
+
return self.text_encoders[0].dtype
|
368 |
+
|
369 |
+
@property
|
370 |
+
def device(self):
|
371 |
+
return self.text_encoders[0].device
|
372 |
+
|
373 |
+
def _load_embeddings(self, loaded_embeddings, tokenizer, text_encoder):
|
374 |
+
# Assuming new tokens are of the format <s_i>
|
375 |
+
self.inserting_toks = [f"<s{i}>" for i in range(loaded_embeddings.shape[0])]
|
376 |
+
special_tokens_dict = {"additional_special_tokens": self.inserting_toks}
|
377 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
378 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
379 |
+
|
380 |
+
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks)
|
381 |
+
assert self.train_ids is not None, "New tokens could not be converted to IDs."
|
382 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
383 |
+
self.train_ids
|
384 |
+
] = loaded_embeddings.to(device=self.device).to(dtype=self.dtype)
|
385 |
+
|
386 |
+
@torch.no_grad()
|
387 |
+
def retract_embeddings(self):
|
388 |
+
for idx, text_encoder in enumerate(self.text_encoders):
|
389 |
+
index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"]
|
390 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
391 |
+
index_no_updates
|
392 |
+
] = (
|
393 |
+
self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates]
|
394 |
+
.to(device=text_encoder.device)
|
395 |
+
.to(dtype=text_encoder.dtype)
|
396 |
+
)
|
397 |
+
|
398 |
+
# for the parts that were updated, we need to normalize them
|
399 |
+
# to have the same std as before
|
400 |
+
std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"]
|
401 |
+
|
402 |
+
index_updates = ~index_no_updates
|
403 |
+
new_embeddings = (
|
404 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
405 |
+
index_updates
|
406 |
+
]
|
407 |
+
)
|
408 |
+
off_ratio = std_token_embedding / new_embeddings.std()
|
409 |
+
|
410 |
+
new_embeddings = new_embeddings * (off_ratio**0.1)
|
411 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[
|
412 |
+
index_updates
|
413 |
+
] = new_embeddings
|
414 |
+
|
415 |
+
def load_embeddings(self, file_path: str):
|
416 |
+
with safe_open(file_path, framework="pt", device=self.device.type) as f:
|
417 |
+
for idx in range(len(self.text_encoders)):
|
418 |
+
text_encoder = self.text_encoders[idx]
|
419 |
+
tokenizer = self.tokenizers[idx]
|
420 |
+
|
421 |
+
loaded_embeddings = f.get_tensor(f"text_encoders_{idx}")
|
422 |
+
self._load_embeddings(loaded_embeddings, tokenizer, text_encoder)
|