Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,18 @@
|
|
1 |
import warnings
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
import torch
|
5 |
|
6 |
# Suppress the FutureWarning
|
7 |
warnings.filterwarnings("ignore", category=FutureWarning, module="torch")
|
8 |
|
9 |
-
# Load the model
|
10 |
-
|
11 |
-
revision = "4c1f24cc10a2a1894304c7ab52edd9710c047571"
|
12 |
-
|
13 |
-
print(f"Loading tokenizer from {model_name}...")
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=True)
|
15 |
-
|
16 |
-
print(f"Loading configuration from {model_name}...")
|
17 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=True)
|
18 |
-
|
19 |
-
# Remove quantization configuration if it exists
|
20 |
-
if hasattr(config, 'quantization_config'):
|
21 |
-
del config.quantization_config
|
22 |
-
|
23 |
-
print(f"Loading model from {model_name}...")
|
24 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, revision=revision, trust_remote_code=True)
|
25 |
-
|
26 |
-
# Check if the model loaded successfully
|
27 |
-
if model is None:
|
28 |
-
print("Failed to load model. Exiting...")
|
29 |
-
exit(1)
|
30 |
-
else:
|
31 |
-
print("Model loaded successfully.")
|
32 |
|
33 |
# Define the text classification function
|
34 |
def classify_text(text):
|
35 |
try:
|
36 |
-
|
37 |
-
|
38 |
-
# Pass the inputs to the model
|
39 |
-
logits = model(**inputs)
|
40 |
-
# Get the probabilities
|
41 |
-
probabilities = torch.softmax(logits, dim=-1).tolist()[0]
|
42 |
-
# Get the predicted class
|
43 |
-
predicted_class = torch.argmax(logits, dim=-1).item()
|
44 |
-
return {
|
45 |
-
"Predicted Class": predicted_class,
|
46 |
-
"Probabilities": probabilities
|
47 |
-
}
|
48 |
except Exception as e:
|
49 |
print(f"Error during text classification: {e}")
|
50 |
return {
|
|
|
1 |
import warnings
|
2 |
import gradio as gr
|
3 |
+
from proxy_model import RemoteModelProxy
|
|
|
4 |
|
5 |
# Suppress the FutureWarning
|
6 |
warnings.filterwarnings("ignore", category=FutureWarning, module="torch")
|
7 |
|
8 |
+
# Load the model via the proxy
|
9 |
+
model_proxy = RemoteModelProxy("deepseek-ai/DeepSeek-V3")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define the text classification function
|
12 |
def classify_text(text):
|
13 |
try:
|
14 |
+
result = model_proxy.classify_text(text)
|
15 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
except Exception as e:
|
17 |
print(f"Error during text classification: {e}")
|
18 |
return {
|