Spaces:
Runtime error
Runtime error
victorialslocum
commited on
Commit
·
eb14dc8
1
Parent(s):
ce01949
update to gradio v3.4
Browse files- app.py +112 -144
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,27 +1,28 @@
|
|
|
|
1 |
import spacy
|
2 |
from spacy import displacy
|
3 |
-
import random
|
4 |
from spacy.tokens import Span
|
5 |
-
import gradio as gr
|
6 |
import pandas as pd
|
7 |
import base64
|
|
|
8 |
|
9 |
|
10 |
DEFAULT_MODEL = "en_core_web"
|
11 |
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
|
12 |
-
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
|
13 |
-
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
|
14 |
-
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
|
15 |
-
DEFAULT_COLOR = "linear-gradient(90deg, #FFCA74, #7AECEC)"
|
16 |
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
|
17 |
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
|
18 |
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
|
19 |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
|
20 |
-
|
21 |
-
|
22 |
button_css = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity)); border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
|
|
|
|
|
|
|
|
|
23 |
NOUN_ATTR = ['text', 'root.text', 'root.dep_', 'root.head.text']
|
24 |
|
|
|
|
|
|
|
25 |
# get the huggingface models specified in the requirements.txt file
|
26 |
def get_all_models():
|
27 |
with open("requirements.txt") as f:
|
@@ -93,30 +94,6 @@ def default_token(text, attributes, model):
|
|
93 |
data.append(tok_data)
|
94 |
return data, model_name
|
95 |
|
96 |
-
# returns noun chunks in text
|
97 |
-
def noun_chunks(text, model):
|
98 |
-
model_name = model + "_sm"
|
99 |
-
nlp = spacy.load(model_name)
|
100 |
-
data = []
|
101 |
-
doc = nlp(text)
|
102 |
-
for chunk in doc.noun_chunks:
|
103 |
-
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
|
104 |
-
chunk.root.head.text])
|
105 |
-
data = pd.DataFrame(data, columns=NOUN_ATTR)
|
106 |
-
return data, model_name
|
107 |
-
|
108 |
-
# returns noun chuncks for the default value
|
109 |
-
# the return value is not a pandas DataFrame
|
110 |
-
def default_noun_chunks(text, model):
|
111 |
-
model_name = model + "_sm"
|
112 |
-
nlp = spacy.load(model_name)
|
113 |
-
data = []
|
114 |
-
doc = nlp(text)
|
115 |
-
for chunk in doc.noun_chunks:
|
116 |
-
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
|
117 |
-
chunk.root.head.text])
|
118 |
-
return data, model_name
|
119 |
-
|
120 |
# Get similarity of two random generated vectors
|
121 |
def random_vectors(text, model):
|
122 |
model_name = model + "_md"
|
@@ -178,6 +155,30 @@ def span(text, span1, span2, label1, label2, model):
|
|
178 |
svg = displacy.render(doc, style="span")
|
179 |
return svg, model_name
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
# get default text based on language model
|
182 |
def get_text(model):
|
183 |
for i in range(len(models)):
|
@@ -200,37 +201,27 @@ with demo:
|
|
200 |
with gr.Column():
|
201 |
gr.Markdown(" ## Choose a language model and the inputted text")
|
202 |
with gr.Row():
|
203 |
-
with gr.Column():
|
204 |
model_input = gr.Dropdown(
|
205 |
choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
|
206 |
-
with gr.Column():
|
207 |
-
gr.Markdown("")
|
208 |
-
with gr.Column():
|
209 |
-
gr.Markdown("")
|
210 |
-
with gr.Column():
|
211 |
-
gr.Markdown("")
|
212 |
with gr.Row():
|
213 |
-
with gr.Column():
|
214 |
text_input = gr.Textbox(
|
215 |
value=DEFAULT_TEXT, interactive=True, label="Input Text")
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
with gr.Box():
|
220 |
with gr.Column():
|
221 |
with gr.Row():
|
222 |
-
with gr.Column():
|
223 |
gr.Markdown(
|
224 |
"## [🔗 Dependency Parser](https://spacy.io/usage/visualizers#dep)")
|
225 |
gr.Markdown(
|
226 |
"The dependency visualizer shows part-of-speech tags and syntactic dependencies")
|
227 |
-
with gr.Column():
|
228 |
-
|
229 |
-
|
230 |
-
gr.Markdown(" ")
|
231 |
-
with gr.Column():
|
232 |
-
dep_model = gr.Textbox(
|
233 |
-
label="Model", value="en_core_web_sm")
|
234 |
with gr.Row():
|
235 |
with gr.Column():
|
236 |
col_punct = gr.Checkbox(
|
@@ -244,168 +235,145 @@ with demo:
|
|
244 |
with gr.Column():
|
245 |
text = gr.Textbox(
|
246 |
label="Text Color", value="black")
|
247 |
-
|
248 |
-
dep_output = gr.HTML(value=dependency(
|
249 |
-
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
|
250 |
with gr.Row():
|
251 |
-
|
|
|
|
|
|
|
252 |
dep_button = gr.Button(
|
253 |
-
"Update Dependency Parser", variant="primary")
|
254 |
with gr.Column():
|
255 |
dep_download_button = gr.HTML(
|
256 |
value=download_svg(dep_output.value))
|
257 |
-
gr.Markdown(" ")
|
258 |
with gr.Box():
|
259 |
with gr.Column():
|
260 |
with gr.Row():
|
261 |
-
with gr.Column():
|
262 |
gr.Markdown(
|
263 |
"## [🔗 Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
|
264 |
gr.Markdown(
|
265 |
"The entity visualizer highlights named entities and their labels in a text")
|
266 |
-
with gr.Column():
|
267 |
-
|
268 |
-
|
269 |
-
gr.Markdown(" ")
|
270 |
-
with gr.Column():
|
271 |
-
ent_model = gr.Textbox(
|
272 |
-
label="Model", value="en_core_web_sm")
|
273 |
ent_input = gr.CheckboxGroup(
|
274 |
-
DEFAULT_ENTS, value=DEFAULT_ENTS)
|
275 |
ent_output = gr.HTML(value=entity(
|
276 |
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL)[0])
|
277 |
-
|
278 |
-
|
|
|
|
|
279 |
with gr.Box():
|
280 |
with gr.Column():
|
281 |
with gr.Row():
|
282 |
-
with gr.Column():
|
283 |
gr.Markdown(
|
284 |
"## [🔗 Token Properties](https://spacy.io/usage/linguistic-features)")
|
285 |
gr.Markdown(
|
286 |
"When you put in raw text to spaCy, it returns a Doc object with different linguistic features")
|
287 |
-
with gr.Column():
|
288 |
-
|
289 |
-
|
290 |
-
gr.Markdown(" ")
|
291 |
-
with gr.Column():
|
292 |
-
tok_model = gr.Textbox(
|
293 |
-
label="Model", value="en_core_web_sm")
|
294 |
with gr.Row():
|
295 |
-
with gr.Column():
|
296 |
tok_input = gr.CheckboxGroup(
|
297 |
-
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR)
|
298 |
-
with gr.Column():
|
299 |
-
gr.Markdown("")
|
300 |
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
|
301 |
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
|
302 |
-
tok_button = gr.Button(
|
303 |
-
"Update Token Properties", variant="primary")
|
304 |
-
with gr.Box():
|
305 |
-
with gr.Column():
|
306 |
with gr.Row():
|
307 |
-
with gr.Column():
|
308 |
-
gr.
|
309 |
-
"
|
310 |
-
gr.Markdown(
|
311 |
-
"You can use `doc.noun_chunks` to extract noun phrases from a doc object")
|
312 |
-
with gr.Column():
|
313 |
-
with gr.Row():
|
314 |
-
with gr.Column():
|
315 |
-
gr.Markdown(" ")
|
316 |
-
with gr.Column():
|
317 |
-
noun_model = gr.Textbox(
|
318 |
-
label="Model", value="en_core_web_sm")
|
319 |
-
noun_output = gr.Dataframe(headers=NOUN_ATTR, value=default_noun_chunks(
|
320 |
-
DEFAULT_TEXT, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
|
321 |
-
noun_button = gr.Button(
|
322 |
-
"Update Noun Chunks", variant="primary")
|
323 |
with gr.Box():
|
324 |
with gr.Column():
|
325 |
with gr.Row():
|
326 |
-
with gr.Column():
|
327 |
gr.Markdown(
|
328 |
"## [🔗 Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
|
329 |
gr.Markdown(
|
330 |
"Words and spans have similarity ratings based on their word vectors")
|
331 |
-
with gr.Column():
|
332 |
-
|
333 |
-
|
334 |
-
gr.Markdown(" ")
|
335 |
-
with gr.Column():
|
336 |
-
sim_model = gr.Textbox(
|
337 |
-
label="Model", value="en_core_web_md")
|
338 |
with gr.Row():
|
339 |
-
with gr.Column():
|
340 |
sim_text1 = gr.Textbox(
|
341 |
value="Apple", label="Word 1", interactive=True,)
|
342 |
-
with gr.Column():
|
343 |
sim_text2 = gr.Textbox(
|
344 |
value="U.K. startup", label="Word 2", interactive=True,)
|
345 |
-
with gr.Column():
|
346 |
sim_output = gr.Textbox(
|
347 |
label="Similarity Score", value="0.12")
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
352 |
with gr.Box():
|
353 |
with gr.Column():
|
354 |
with gr.Row():
|
355 |
-
with gr.Column():
|
356 |
gr.Markdown(
|
357 |
"## [🔗 Spans](https://spacy.io/usage/visualizers#span)")
|
358 |
gr.Markdown(
|
359 |
"The span visualizer highlights overlapping spans in a text")
|
360 |
-
with gr.Column():
|
361 |
-
|
362 |
-
with gr.Column():
|
363 |
-
gr.Markdown(" ")
|
364 |
-
with gr.Column():
|
365 |
-
span_model = gr.Textbox(
|
366 |
label="Model", value="en_core_web_sm")
|
367 |
with gr.Row():
|
368 |
-
with gr.Column():
|
369 |
span1 = gr.Textbox(
|
370 |
label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence")
|
371 |
-
with gr.Column():
|
372 |
label1 = gr.Textbox(value="ORG",
|
373 |
label="Label for Span 1")
|
374 |
-
with gr.Column():
|
375 |
-
gr.Markdown("")
|
376 |
-
with gr.Column():
|
377 |
-
gr.Markdown("")
|
378 |
with gr.Row():
|
379 |
-
with gr.Column():
|
380 |
span2 = gr.Textbox(
|
381 |
label="Span 2", value="U.K.", placeholder="Input another part of the sentence")
|
382 |
-
with gr.Column():
|
383 |
label2 = gr.Textbox(value="GPE",
|
384 |
label="Label for Span 2")
|
385 |
-
with gr.Column():
|
386 |
-
gr.Markdown("")
|
387 |
-
with gr.Column():
|
388 |
-
gr.Markdown("")
|
389 |
span_output = gr.HTML(value=span(
|
390 |
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL)[0])
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
# change text based on model input
|
394 |
model_input.change(get_text, inputs=[model_input], outputs=text_input)
|
395 |
-
|
396 |
# main button - update all components
|
397 |
button.click(dependency, inputs=[
|
398 |
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
|
399 |
button.click(
|
400 |
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
401 |
-
button.click(
|
402 |
-
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
|
403 |
button.click(
|
404 |
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
405 |
button.click(vectors, inputs=[sim_text1,
|
406 |
sim_text2, model_input], outputs=[sim_output, sim_model])
|
407 |
button.click(
|
408 |
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
|
|
|
|
|
409 |
|
410 |
# individual component buttons
|
411 |
dep_button.click(dependency, inputs=[
|
@@ -414,13 +382,13 @@ with demo:
|
|
414 |
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
415 |
tok_button.click(
|
416 |
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
417 |
-
noun_button.click(
|
418 |
-
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
|
419 |
sim_button.click(vectors, inputs=[
|
420 |
sim_text1, sim_text2, model_input], outputs=[sim_output, sim_model])
|
421 |
-
span_button.click(
|
422 |
-
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
|
423 |
sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
|
424 |
sim_output, sim_text1, sim_text2, sim_model])
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import spacy
|
3 |
from spacy import displacy
|
|
|
4 |
from spacy.tokens import Span
|
|
|
5 |
import pandas as pd
|
6 |
import base64
|
7 |
+
import random
|
8 |
|
9 |
|
10 |
DEFAULT_MODEL = "en_core_web"
|
11 |
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
|
|
|
|
|
|
|
|
|
12 |
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
|
13 |
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
|
14 |
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
|
15 |
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
|
|
|
|
|
16 |
button_css = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity)); border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
|
17 |
+
DEFAULT_COLOR = "linear-gradient(90deg, #FFCA74, #7AECEC)"
|
18 |
+
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
|
19 |
+
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
|
20 |
+
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
|
21 |
NOUN_ATTR = ['text', 'root.text', 'root.dep_', 'root.head.text']
|
22 |
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
# get the huggingface models specified in the requirements.txt file
|
27 |
def get_all_models():
|
28 |
with open("requirements.txt") as f:
|
|
|
94 |
data.append(tok_data)
|
95 |
return data, model_name
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# Get similarity of two random generated vectors
|
98 |
def random_vectors(text, model):
|
99 |
model_name = model + "_md"
|
|
|
155 |
svg = displacy.render(doc, style="span")
|
156 |
return svg, model_name
|
157 |
|
158 |
+
# returns noun chunks in text
|
159 |
+
def noun_chunks(text, model):
|
160 |
+
model_name = model + "_sm"
|
161 |
+
nlp = spacy.load(model_name)
|
162 |
+
data = []
|
163 |
+
doc = nlp(text)
|
164 |
+
for chunk in doc.noun_chunks:
|
165 |
+
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
|
166 |
+
chunk.root.head.text])
|
167 |
+
data = pd.DataFrame(data, columns=NOUN_ATTR)
|
168 |
+
return data, model_name
|
169 |
+
|
170 |
+
# returns noun chuncks for the default value
|
171 |
+
# the return value is not a pandas DataFrame
|
172 |
+
def default_noun_chunks(text, model):
|
173 |
+
model_name = model + "_sm"
|
174 |
+
nlp = spacy.load(model_name)
|
175 |
+
data = []
|
176 |
+
doc = nlp(text)
|
177 |
+
for chunk in doc.noun_chunks:
|
178 |
+
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
|
179 |
+
chunk.root.head.text])
|
180 |
+
return data, model_name
|
181 |
+
|
182 |
# get default text based on language model
|
183 |
def get_text(model):
|
184 |
for i in range(len(models)):
|
|
|
201 |
with gr.Column():
|
202 |
gr.Markdown(" ## Choose a language model and the inputted text")
|
203 |
with gr.Row():
|
204 |
+
with gr.Column(scale=0.25):
|
205 |
model_input = gr.Dropdown(
|
206 |
choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
with gr.Row():
|
208 |
+
with gr.Column(scale=0.5):
|
209 |
text_input = gr.Textbox(
|
210 |
value=DEFAULT_TEXT, interactive=True, label="Input Text")
|
211 |
+
with gr.Row():
|
212 |
+
with gr.Column(scale=0.25):
|
213 |
+
button = gr.Button("Update", variant="primary").style(full_width=False)
|
214 |
with gr.Box():
|
215 |
with gr.Column():
|
216 |
with gr.Row():
|
217 |
+
with gr.Column(scale=0.75):
|
218 |
gr.Markdown(
|
219 |
"## [🔗 Dependency Parser](https://spacy.io/usage/visualizers#dep)")
|
220 |
gr.Markdown(
|
221 |
"The dependency visualizer shows part-of-speech tags and syntactic dependencies")
|
222 |
+
with gr.Column(scale=0.25):
|
223 |
+
dep_model = gr.Textbox(
|
224 |
+
label="Model", value="en_core_web_sm")
|
|
|
|
|
|
|
|
|
225 |
with gr.Row():
|
226 |
with gr.Column():
|
227 |
col_punct = gr.Checkbox(
|
|
|
235 |
with gr.Column():
|
236 |
text = gr.Textbox(
|
237 |
label="Text Color", value="black")
|
|
|
|
|
|
|
238 |
with gr.Row():
|
239 |
+
dep_output = gr.HTML(value=dependency(
|
240 |
+
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
|
241 |
+
with gr.Row():
|
242 |
+
with gr.Column(scale=0.25):
|
243 |
dep_button = gr.Button(
|
244 |
+
"Update Dependency Parser", variant="primary").style(full_width=False)
|
245 |
with gr.Column():
|
246 |
dep_download_button = gr.HTML(
|
247 |
value=download_svg(dep_output.value))
|
|
|
248 |
with gr.Box():
|
249 |
with gr.Column():
|
250 |
with gr.Row():
|
251 |
+
with gr.Column(scale=0.75):
|
252 |
gr.Markdown(
|
253 |
"## [🔗 Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
|
254 |
gr.Markdown(
|
255 |
"The entity visualizer highlights named entities and their labels in a text")
|
256 |
+
with gr.Column(scale=0.25):
|
257 |
+
ent_model = gr.Textbox(
|
258 |
+
label="Model", value="en_core_web_sm")
|
|
|
|
|
|
|
|
|
259 |
ent_input = gr.CheckboxGroup(
|
260 |
+
DEFAULT_ENTS, value=DEFAULT_ENTS, label="Entity Types")
|
261 |
ent_output = gr.HTML(value=entity(
|
262 |
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL)[0])
|
263 |
+
with gr.Row():
|
264 |
+
with gr.Column(scale=0.25):
|
265 |
+
ent_button = gr.Button(
|
266 |
+
"Update Entity Recognizer", variant="primary")
|
267 |
with gr.Box():
|
268 |
with gr.Column():
|
269 |
with gr.Row():
|
270 |
+
with gr.Column(scale=0.75):
|
271 |
gr.Markdown(
|
272 |
"## [🔗 Token Properties](https://spacy.io/usage/linguistic-features)")
|
273 |
gr.Markdown(
|
274 |
"When you put in raw text to spaCy, it returns a Doc object with different linguistic features")
|
275 |
+
with gr.Column(scale=0.25):
|
276 |
+
tok_model = gr.Textbox(
|
277 |
+
label="Model", value="en_core_web_sm")
|
|
|
|
|
|
|
|
|
278 |
with gr.Row():
|
279 |
+
with gr.Column(scale=0.5):
|
280 |
tok_input = gr.CheckboxGroup(
|
281 |
+
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR, label="Token Attributes", interactive=True)
|
|
|
|
|
282 |
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
|
283 |
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
|
|
|
|
|
|
|
|
|
284 |
with gr.Row():
|
285 |
+
with gr.Column(scale=0.25):
|
286 |
+
tok_button = gr.Button(
|
287 |
+
"Update Token Properties", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
with gr.Box():
|
289 |
with gr.Column():
|
290 |
with gr.Row():
|
291 |
+
with gr.Column(scale=0.75):
|
292 |
gr.Markdown(
|
293 |
"## [🔗 Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
|
294 |
gr.Markdown(
|
295 |
"Words and spans have similarity ratings based on their word vectors")
|
296 |
+
with gr.Column(scale=0.25):
|
297 |
+
sim_model = gr.Textbox(
|
298 |
+
label="Model", value="en_core_web_md")
|
|
|
|
|
|
|
|
|
299 |
with gr.Row():
|
300 |
+
with gr.Column(scale=0.25):
|
301 |
sim_text1 = gr.Textbox(
|
302 |
value="Apple", label="Word 1", interactive=True,)
|
303 |
+
with gr.Column(scale=0.25):
|
304 |
sim_text2 = gr.Textbox(
|
305 |
value="U.K. startup", label="Word 2", interactive=True,)
|
306 |
+
with gr.Column(scale=0.25):
|
307 |
sim_output = gr.Textbox(
|
308 |
label="Similarity Score", value="0.12")
|
309 |
+
with gr.Row():
|
310 |
+
with gr.Column(scale=0.25):
|
311 |
+
sim_random_button = gr.Button("Update random words")
|
312 |
+
with gr.Column(scale=0.25):
|
313 |
+
sim_button = gr.Button("Update similarity", variant="primary")
|
314 |
with gr.Box():
|
315 |
with gr.Column():
|
316 |
with gr.Row():
|
317 |
+
with gr.Column(scale=0.75):
|
318 |
gr.Markdown(
|
319 |
"## [🔗 Spans](https://spacy.io/usage/visualizers#span)")
|
320 |
gr.Markdown(
|
321 |
"The span visualizer highlights overlapping spans in a text")
|
322 |
+
with gr.Column(scale=0.25):
|
323 |
+
span_model = gr.Textbox(
|
|
|
|
|
|
|
|
|
324 |
label="Model", value="en_core_web_sm")
|
325 |
with gr.Row():
|
326 |
+
with gr.Column(scale=0.3):
|
327 |
span1 = gr.Textbox(
|
328 |
label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence")
|
329 |
+
with gr.Column(scale=0.3):
|
330 |
label1 = gr.Textbox(value="ORG",
|
331 |
label="Label for Span 1")
|
|
|
|
|
|
|
|
|
332 |
with gr.Row():
|
333 |
+
with gr.Column(scale=0.3):
|
334 |
span2 = gr.Textbox(
|
335 |
label="Span 2", value="U.K.", placeholder="Input another part of the sentence")
|
336 |
+
with gr.Column(scale=0.3):
|
337 |
label2 = gr.Textbox(value="GPE",
|
338 |
label="Label for Span 2")
|
|
|
|
|
|
|
|
|
339 |
span_output = gr.HTML(value=span(
|
340 |
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL)[0])
|
341 |
+
with gr.Row():
|
342 |
+
with gr.Column(scale=0.25):
|
343 |
+
span_button = gr.Button("Update Spans", variant="primary")
|
344 |
+
with gr.Box():
|
345 |
+
with gr.Column():
|
346 |
+
with gr.Row():
|
347 |
+
with gr.Column(scale=0.75):
|
348 |
+
gr.Markdown(
|
349 |
+
"## [🔗 Noun chunks](https://spacy.io/usage/linguistic-features#noun-chunks)")
|
350 |
+
gr.Markdown(
|
351 |
+
"You can use `doc.noun_chunks` to extract noun phrases from a doc object")
|
352 |
+
with gr.Column(scale=0.25):
|
353 |
+
noun_model = gr.Textbox(
|
354 |
+
label="Model", value="en_core_web_sm")
|
355 |
+
noun_output = gr.Dataframe(headers=NOUN_ATTR, value=default_noun_chunks(
|
356 |
+
DEFAULT_TEXT, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
|
357 |
+
with gr.Row():
|
358 |
+
with gr.Column(scale=0.25):
|
359 |
+
noun_button = gr.Button(
|
360 |
+
"Update Noun Chunks", variant="primary")
|
361 |
|
362 |
# change text based on model input
|
363 |
model_input.change(get_text, inputs=[model_input], outputs=text_input)
|
|
|
364 |
# main button - update all components
|
365 |
button.click(dependency, inputs=[
|
366 |
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
|
367 |
button.click(
|
368 |
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
|
|
|
|
369 |
button.click(
|
370 |
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
371 |
button.click(vectors, inputs=[sim_text1,
|
372 |
sim_text2, model_input], outputs=[sim_output, sim_model])
|
373 |
button.click(
|
374 |
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
|
375 |
+
button.click(
|
376 |
+
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
|
377 |
|
378 |
# individual component buttons
|
379 |
dep_button.click(dependency, inputs=[
|
|
|
382 |
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
|
383 |
tok_button.click(
|
384 |
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
|
|
|
|
|
385 |
sim_button.click(vectors, inputs=[
|
386 |
sim_text1, sim_text2, model_input], outputs=[sim_output, sim_model])
|
|
|
|
|
387 |
sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
|
388 |
sim_output, sim_text1, sim_text2, sim_model])
|
389 |
+
span_button.click(
|
390 |
+
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
|
391 |
+
noun_button.click(
|
392 |
+
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
|
393 |
+
|
394 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
pandas==1.4.2
|
2 |
-
gradio==3.0
|
3 |
spacy==3.4.0
|
4 |
|
5 |
https://huggingface.co/spacy/ca_core_news_md/resolve/main/ca_core_news_md-any-py3-none-any.whl
|
|
|
1 |
pandas==1.4.2
|
2 |
+
gradio==3.4.0
|
3 |
spacy==3.4.0
|
4 |
|
5 |
https://huggingface.co/spacy/ca_core_news_md/resolve/main/ca_core_news_md-any-py3-none-any.whl
|