@@ -36,13 +36,14 @@ git clone https://github.com/sql-machine-learning/elasticdl.git
3636
3737### Start Kubernetes Cluster
3838
39- We start minikube with a command-line option ` --mount-string ` ,
40- which mounts the host directory ` $DATA_PATH ` to ` /data ` path in all minikube containers.
39+ We start minikube with a command-line option ` --mount-string ` , which mounts the
40+ directory ` {elasticdl_repo_root}/data ` in local host to ` /data ` path in all
41+ minikube containers.
4142
4243``` bash
43- export DATA_PATH={a_folder_path_to_store_training_data}
44- minikube start --vm-driver=hyperkit --cpus 2 --memory 6144 --disk-size=50gb --mount=true --mount-string=" $DATA_PATH :/data"
4544cd elasticdl
45+ mkdir data
46+ minikube start --vm-driver=hyperkit --cpus 2 --memory 6144 --disk-size=50gb --mount=true --mount-string=" ./data:/data"
4647kubectl apply -f elasticdl/manifests/elasticdl-rbac.yaml
4748eval $( minikube docker-env)
4849```
@@ -64,18 +65,16 @@ We generate MNIST training and evaluation data in RecordIO format. We provide a
6465script in elasticdl repo.
6566
6667``` bash
68+ # Change directory to the root of elasticdl repo
69+ cd ../
6770docker pull elasticdl/elasticdl:dev
68- cd {elasticdl_repo_root}
6971docker run --rm -it \
7072 -v $HOME /.keras/datasets:/root/.keras/datasets \
7173 -v $PWD :/work \
7274 -w /work elasticdl/elasticdl:dev \
7375 bash -c " scripts/gen_dataset.sh data"
74- cp -r data/* $DATA_PATH
7576```
7677
77- We generate datasets and copy them to ` $DATA_PATH ` .
78-
7978### Summit a training job
8079
8180We use the following command to submit a training job:
0 commit comments