You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
base.dists.weibull.stdev,"\nbase.dists.weibull.stdev( k, λ )\n Returns the standard deviation of a Weibull distribution.\n\n If `k <= 0` or `λ <= 0`, the function returns `NaN`.\n\n If `k` or `λ` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n k: number\n Shape parameter.\n\n λ: number\n Scale parameter.\n\n Returns\n -------\n out: number\n Standard deviation.\n\n Examples\n --------\n > var v = base.dists.weibull.stdev( 1.0, 1.0 )\n 1.0\n > v = base.dists.weibull.stdev( 4.0, 12.0 )\n ~3.051\n > v = base.dists.weibull.stdev( 8.0, 2.0 )\n ~0.279\n\n"
803
803
base.dists.weibull.variance,"\nbase.dists.weibull.variance( k, λ )\n Returns the variance of a Weibull distribution.\n\n If `k <= 0` or `λ <= 0`, the function returns `NaN`.\n\n If `k` or `λ` is `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n k: number\n Shape parameter.\n\n λ: number\n Scale parameter.\n\n Returns\n -------\n out: number\n Variance.\n\n Examples\n --------\n > var v = base.dists.weibull.variance( 1.0, 1.0 )\n 1.0\n > v = base.dists.weibull.variance( 4.0, 12.0 )\n ~9.311\n > v = base.dists.weibull.variance( 8.0, 2.0 )\n ~0.078\n\n"
804
804
base.dists.weibull.Weibull,"\nbase.dists.weibull.Weibull( [k, λ] )\n Returns a Weibull distribution object.\n\n Parameters\n ----------\n k: number (optional)\n Shape parameter. Must be greater than `0`. Default: `1.0`.\n\n λ: number (optional)\n Scale parameter. Must be greater than `0`. Default: `1.0`.\n\n Returns\n -------\n weibull: Object\n Distribution instance.\n\n weibull.k: number\n Shape parameter. If set, the value must be greater than `0`.\n\n weibull.lambda: number\n Scale parameter. If set, the value must be greater than `0`.\n\n weibull.entropy: number\n Read-only property which returns the differential entropy.\n\n weibull.kurtosis: number\n Read-only property which returns the excess kurtosis.\n\n weibull.mean: number\n Read-only property which returns the expected value.\n\n weibull.median: number\n Read-only property which returns the median.\n\n weibull.mode: number\n Read-only property which returns the mode.\n\n weibull.skewness: number\n Read-only property which returns the skewness.\n\n weibull.stdev: number\n Read-only property which returns the standard deviation.\n\n weibull.variance: number\n Read-only property which returns the variance.\n\n weibull.cdf: Function\n Evaluates the cumulative distribution function (CDF).\n\n weibull.logcdf: Function\n Evaluates the natural logarithm of the cumulative distribution function\n (CDF).\n\n weibull.logpdf: Function\n Evaluates the natural logarithm of the probability density function\n (PDF).\n\n weibull.mgf: Function\n Evaluates the moment-generating function (MGF).\n\n weibull.pdf: Function\n Evaluates the probability density function (PDF).\n\n weibull.quantile: Function\n Evaluates the quantile function at probability `p`.\n\n Examples\n --------\n > var weibull = base.dists.weibull.Weibull( 6.0, 5.0 );\n > weibull.k\n 6.0\n > weibull.lambda\n 5.0\n > weibull.entropy\n ~1.299\n > weibull.kurtosis\n ~0.035\n > weibull.mean\n ~4.639\n > weibull.median\n ~4.704\n > weibull.mode\n ~4.85\n > weibull.skewness\n ~-0.373\n > weibull.stdev\n ~0.899\n > weibull.variance\n ~0.808\n > weibull.cdf( 3.0 )\n ~0.046\n > weibull.logcdf( 3.0 )\n ~-3.088\n > weibull.logpdf( 1.0 )\n ~-7.865\n > weibull.mgf( -0.5 )\n ~0.075\n > weibull.pdf( 3.0 )\n ~0.089\n > weibull.quantile( 0.8 )\n ~5.413\n\n"
805
-
base.ellipe,"\nbase.ellipe( m )\n Computes the complete elliptic integral of the second kind.\n\n Parameters\n ----------\n m: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.ellipe( 0.5 )\n ~1.351\n > y = base.ellipe( -1.0 )\n ~1.910\n > y = base.ellipe( 2.0 )\n NaN\n > y = base.ellipe( PINF )\n NaN\n > y = base.ellipe( NINF )\n NaN\n > y = base.ellipe( NaN )\n NaN\n\n See Also\n --------\n base.ellipk\n"
805
+
base.ellipe,"\nbase.ellipe( m )\n Computes the complete elliptic integral of the second kind.\n\n Parameters\n ----------\n m: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.ellipe( 0.5 )\n ~1.351\n > y = base.ellipe( -1.0 )\n ~1.910\n > y = base.ellipe( 2.0 )\n NaN\n > y = base.ellipe( PINF )\n NaN\n > y = base.ellipe( NINF )\n NaN\n > y = base.ellipe( NaN )\n NaN\n\n See Also\n --------\n base.ellipj, base.ellipk\n"
806
806
base.ellipj,"\nbase.ellipj( u, m )\n Computes the Jacobi elliptic functions sn, cn, and dn and Jacobi\n amplitude am.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: Array\n Jacobi elliptic functions and Jacobi amplitude.\n\n Examples\n --------\n > var v = base.ellipj( 0.3, 0.5 )\n [ ~0.293, ~0.956, ~0.978, ~0.298 ]\n > v = base.ellipj( 0.0, 0.0 )\n [ ~0.0, ~1.0, ~1.0, ~0.0 ]\n > v = base.ellipj( Infinity, 1.0 )\n [ ~1.0, ~0.0, ~0.0, ~1.571 ]\n > v = base.ellipj( 0.0, -2.0)\n [ ~0.0, ~1.0, ~1.0, NaN ]\n > v = base.ellipj( NaN, NaN )\n [ NaN, NaN, NaN, NaN ]\n\n\nbase.ellipj.assign( u, m, out, stride, offset )\n Computes the Jacobi elliptic functions sn, cn, and dn and Jacobi\n amplitude am and assigns results to a provided output array.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n out: Array|TypedArray|Object\n Output array.\n\n stride: integer\n Output array stride.\n\n offset: integer\n Output array index offset.\n\n Returns\n -------\n out: Array|TypedArray|Object\n Jacobi elliptic functions and Jacobi amplitude.\n\n Examples\n --------\n > var out = new Float64Array( 4 );\n > var v = base.ellipj.assign( 0.3, 0.5, out, 1, 0 )\n <Float64Array>[ ~0.293, ~0.956, ~0.978, ~0.298 ]\n > var bool = ( v === out )\n true\n\n\nbase.ellipj.sn( u, m )\n Computes the Jacobi elliptic function sn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function sn.\n\n Examples\n --------\n > var v = base.ellipj.sn( 0.3, 0.5 )\n ~0.293\n\n\nbase.ellipj.cn( u, m )\n Computes the Jacobi elliptic functions cn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function cn.\n\n Examples\n --------\n > var v = base.ellipj.cn( 0.3, 0.5 )\n ~0.956\n\n\nbase.ellipj.dn( u, m )\n Computes the Jacobi elliptic function dn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function dn.\n\n Examples\n --------\n > var v = base.ellipj.dn( 0.3, 0.5 )\n ~0.978\n\n\nbase.ellipj.am( u, m )\n Computes the Jacobi amplitude am.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function am.\n\n Examples\n --------\n > var v = base.ellipj.am( 0.3, 0.5 )\n ~0.298\n\n See Also\n --------\n base.ellipe, base.ellipk"
807
807
base.ellipj.assign,"\nbase.ellipj.assign( u, m, out, stride, offset )\n Computes the Jacobi elliptic functions sn, cn, and dn and Jacobi\n amplitude am and assigns results to a provided output array.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n out: Array|TypedArray|Object\n Output array.\n\n stride: integer\n Output array stride.\n\n offset: integer\n Output array index offset.\n\n Returns\n -------\n out: Array|TypedArray|Object\n Jacobi elliptic functions and Jacobi amplitude.\n\n Examples\n --------\n > var out = new Float64Array( 4 );\n > var v = base.ellipj.assign( 0.3, 0.5, out, 1, 0 )\n <Float64Array>[ ~0.293, ~0.956, ~0.978, ~0.298 ]\n > var bool = ( v === out )\n true"
808
808
base.ellipj.sn,"\nbase.ellipj.sn( u, m )\n Computes the Jacobi elliptic function sn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function sn.\n\n Examples\n --------\n > var v = base.ellipj.sn( 0.3, 0.5 )\n ~0.293"
809
809
base.ellipj.cn,"\nbase.ellipj.cn( u, m )\n Computes the Jacobi elliptic functions cn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function cn.\n\n Examples\n --------\n > var v = base.ellipj.cn( 0.3, 0.5 )\n ~0.956"
810
810
base.ellipj.dn,"\nbase.ellipj.dn( u, m )\n Computes the Jacobi elliptic function dn.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function dn.\n\n Examples\n --------\n > var v = base.ellipj.dn( 0.3, 0.5 )\n ~0.978"
811
811
base.ellipj.am,"\nbase.ellipj.am( u, m )\n Computes the Jacobi amplitude am.\n\n Parameters\n ----------\n u: number\n Input value.\n\n m: number\n Modulus m, equivalent to k².\n\n Returns\n -------\n out: number\n Jacobi elliptic function am.\n\n Examples\n --------\n > var v = base.ellipj.am( 0.3, 0.5 )\n ~0.298\n\n See Also\n --------\n base.ellipe, base.ellipk"
812
-
base.ellipk,"\nbase.ellipk( m )\n Computes the complete elliptic integral of the first kind.\n\n Parameters\n ----------\n m: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.ellipk( 0.5 )\n ~1.854\n > y = base.ellipk( -1.0 )\n ~1.311\n > y = base.ellipk( 2.0 )\n NaN\n > y = base.ellipk( PINF )\n NaN\n > y = base.ellipk( NINF )\n NaN\n > y = base.ellipk( NaN )\n NaN\n\n See Also\n --------\n base.ellipe\n"
812
+
base.ellipk,"\nbase.ellipk( m )\n Computes the complete elliptic integral of the first kind.\n\n Parameters\n ----------\n m: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.ellipk( 0.5 )\n ~1.854\n > y = base.ellipk( -1.0 )\n ~1.311\n > y = base.ellipk( 2.0 )\n NaN\n > y = base.ellipk( PINF )\n NaN\n > y = base.ellipk( NINF )\n NaN\n > y = base.ellipk( NaN )\n NaN\n\n See Also\n --------\n base.ellipe, base.ellipj\n"
813
813
base.epsdiff,"\nbase.epsdiff( x, y[, scale] )\n Computes the relative difference of two real numbers in units of double-\n precision floating-point epsilon.\n\n By default, the function scales the absolute difference by dividing the\n absolute difference by the maximum absolute value of `x` and `y`. To scale\n by a different function, specify a scale function name.\n\n The following `scale` functions are supported:\n\n - 'max-abs': maximum absolute value of `x` and `y` (default).\n - 'max': maximum value of `x` and `y`.\n - 'min-abs': minimum absolute value of `x` and `y`.\n - 'min': minimum value of `x` and `y`.\n - 'mean-abs': arithmetic mean of the absolute values of `x` and `y`.\n - 'mean': arithmetic mean of `x` and `y`.\n - 'x': `x` (*noncommutative*).\n - 'y': `y` (*noncommutative*).\n\n To use a custom scale function, provide a function which accepts two numeric\n arguments `x` and `y`.\n\n If computing the relative difference in units of epsilon will result in\n overflow, the function returns the maximum double-precision floating-point\n number.\n\n If the absolute difference of `x` and `y` is `0`, the relative difference is\n always `0`.\n\n If `|x| = |y| = infinity`, the function returns `NaN`.\n\n If `|x| = |-y| = infinity`, the relative difference is `+infinity`.\n\n If a `scale` function returns `0`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n First number.\n\n y: number\n Second number.\n\n scale: string|Function (optional)\n Scale function. Default: `'max-abs'`.\n\n Returns\n -------\n out: number\n Relative difference in units of double-precision floating-point epsilon.\n\n Examples\n --------\n > var d = base.epsdiff( 12.15, 12.149999999999999 )\n ~0.658\n > d = base.epsdiff( 2.4341309458983933, 2.4341309458633909, 'mean-abs' )\n ~64761.512\n\n // Custom scale function:\n > function scale( x, y ) { return ( x > y ) ? y : x; };\n > d = base.epsdiff( 1.0000000000000002, 1.0000000000000100, scale )\n ~44\n\n See Also\n --------\n base.absdiff, base.reldiff\n"
814
814
base.erf,"\nbase.erf( x )\n Evaluates the error function.\n\n If provided `NaN`, the function returns `NaN`.\n\n As the error function is an odd function (i.e., `erf(-x) == -erf(x)`), if\n provided `-0`, the function returns `-0`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.erf( 2.0 )\n ~0.9953\n > y = base.erf( -1.0 )\n ~-0.8427\n > y = base.erf( -0.0 )\n -0.0\n > y = base.erf( NaN )\n NaN\n\n See Also\n --------\n base.erfc, base.erfinv, base.erfcinv\n"
815
815
base.erfc,"\nbase.erfc( x )\n Evaluates the complementary error function.\n\n If provided `NaN`, the function returns `NaN`.\n\n Parameters\n ----------\n x: number\n Input value.\n\n Returns\n -------\n y: number\n Function value.\n\n Examples\n --------\n > var y = base.erfc( 2.0 )\n ~0.0047\n > y = base.erfc( -1.0 )\n ~1.8427\n > y = base.erfc( 0.0 )\n 1.0\n > y = base.erfc( PINF )\n 0.0\n > y = base.erfc( NINF )\n 2.0\n > y = base.erfc( NaN )\n NaN\n\n See Also\n --------\n base.erf, base.erfinv, base.erfcinv, base.erfcx\n"
base.dists.weibull.variance,"\nbase.dists.weibull.variance( k:number, λ:number )\n Returns the variance of a Weibull distribution.\n"
804
804
base.dists.weibull.Weibull,"\nbase.dists.weibull.Weibull( [k:number, λ:number] )\n Returns a Weibull distribution object.\n"
805
805
base.ellipe,"\nbase.ellipe( m:number )\n Computes the complete elliptic integral of the second kind.\n"
806
+
base.ellipj,"\nbase.ellipj( u:number, m:number )\n Computes the Jacobi elliptic functions sn, cn, and dn and Jacobi\n amplitude am.\n"
807
+
base.ellipj.assign,"\nbase.ellipj.assign( u:number, m:number, out:Array|TypedArray|Object, \n stride:integer, offset:integer )\n Computes the Jacobi elliptic functions sn, cn, and dn and Jacobi\n amplitude am and assigns results to a provided output array.\n"
808
+
base.ellipj.sn,"\nbase.ellipj.sn( u:number, m:number )\n Computes the Jacobi elliptic function sn.\n"
809
+
base.ellipj.cn,"\nbase.ellipj.cn( u:number, m:number )\n Computes the Jacobi elliptic functions cn.\n"
810
+
base.ellipj.dn,"\nbase.ellipj.dn( u:number, m:number )\n Computes the Jacobi elliptic function dn.\n"
811
+
base.ellipj.am,"\nbase.ellipj.am( u:number, m:number )\n Computes the Jacobi amplitude am.\n"
806
812
base.ellipk,"\nbase.ellipk( m:number )\n Computes the complete elliptic integral of the first kind.\n"
807
813
base.epsdiff,"\nbase.epsdiff( x:number, y:number[, scale:string|Function] )\n Computes the relative difference of two real numbers in units of double-\n precision floating-point epsilon.\n"
808
814
base.erf,"\nbase.erf( x:number )\n Evaluates the error function.\n"
0 commit comments