-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolynom_funcs.py
242 lines (177 loc) · 9.33 KB
/
polynom_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import eye_center_detector as ecd
import face_features_recognition as ff
import numpy as np
def get_mapping_xys_c(list_of_image_lists, detector, predictor, dp, minDist, param1, param2, minRadius, maxRadius):
# print("list_of_image_lists: ", list_of_image_lists)
list_of_eye_frame_lists = [] # list containing lists of eye-frames
list_of_eye_frames_xy_in_orig_img = [] # list of where the eyeframes were cut out from the respective image
# go through every image-list in this list of lists and extract left and right eye-frames in every image
# create a list containing lists of eye-frames
# and a list containing lists of [(x,y), (x,y)] where x,y corner of left/right eye-frame
for image_list in list_of_image_lists:
eye_frames_lr = []
eye_frames_xy_in_orig_img = []
for image in image_list:
dets = detector(image, 1)
if len(dets) is not 0:
d = dets[0]
predictions = predictor(image, d)
shape = [(int(s.x), int(s.y)) for s in predictions.parts()]
original_eye_l_x, original_eye_l_y, left_eye_frame = ff.extract_eye(ff.LEFT_EYE_IDs, shape, image)
original_eye_r_x, original_eye_r_y, right_eye_frame = ff.extract_eye(ff.RIGHT_EYE_IDs, shape, image)
eye_frames_lr.append([left_eye_frame, right_eye_frame])
eye_frames_xy_in_orig_img.append(
[(original_eye_l_x, original_eye_l_y), (original_eye_r_x, original_eye_r_y)])
# print("eye_frames_lr:", eye_frames_lr)
list_of_eye_frame_lists.append(eye_frames_lr)
list_of_eye_frames_xy_in_orig_img.append(eye_frames_xy_in_orig_img)
# print("xy orig:", list_of_eye_frames_xy_in_orig_img)
# print("list_of_eye_frame_lists:", list_of_eye_frame_lists)
# create a list with lists of the xy-positions of left and right eye-frames, respectively
list_of_eyecenter_xy_lists = []
for eye_list in list_of_eye_frame_lists:
# ecd.center_detection returns list of [(xl ,yl) , (xr, yr)]'s
list_of_eyecenter_xy_lists.append(ecd.circle_detection(eye_list, dp, minDist, param1, param2, minRadius, maxRadius))
# print("list_of_eyecenter_xy_lists:", list_of_eyecenter_xy_lists)
# find eye center coordinates in starting image
list_of_eyecenter_xys_in_starting_img_lists = []
for orig_list, centers_list in zip(list_of_eye_frames_xy_in_orig_img, list_of_eyecenter_xy_lists):
eyecenter_xys_in_starting_img_list = []
for ((orig_xl, orig_yl), (orig_xr, orig_yr)), ((eye_cxl, eye_cyl), (eye_cxr, eye_cyr)) in zip(orig_list,
centers_list):
eyecenter_xys_in_starting_img_list.append(
[(orig_xl + eye_cxl, orig_yl + eye_cyl), (orig_xr + eye_cxr, orig_yr + eye_cyr)])
list_of_eyecenter_xys_in_starting_img_lists.append(eyecenter_xys_in_starting_img_list)
# print("list of eyecenter_xys:", list_of_eyecenter_xys_in_starting_img_lists)
# calculate mean xys of left and right eye-centers
list_of_xys_to_map_lists = []
for xy_list in list_of_eyecenter_xys_in_starting_img_lists:
sum_xr, sum_yr, sum_xl, sum_yl = 0, 0, 0, 0
divisor = len(xy_list)
for ((xc_l, yc_l), (xc_r, yc_r)) in xy_list:
# print("xl,yl xr,yr:", xc_l, yc_l, xc_r, yc_r)
sum_xl = sum_xl + xc_l
sum_yl = sum_yl + yc_l
sum_xr = sum_xr + xc_r
sum_yr = sum_yr + yc_r
list_of_xys_to_map_lists.append(
[(round(sum_xl / divisor), round(sum_yl / divisor)),
(round(sum_xr / divisor), round(sum_yr / divisor))])
mapping_xys_left = [(x, y) for ((x, y), (_, _)) in list_of_xys_to_map_lists]
mapping_xys_right = [(x, y) for ((_, _), (x, y)) in list_of_xys_to_map_lists]
return mapping_xys_left, mapping_xys_right
def get_mapping_xys(list_of_image_lists, thresholds, detector, predictor):
# print("list_of_image_lists: ", list_of_image_lists)
list_of_eye_frame_lists = [] # list containing lists of eye-frames
list_of_eye_frames_xy_in_orig_img = [] # list of where the eyeframes were cut out from the respective image
# go through every image-list in this list of lists and extract left and right eye-frames in every image
# create a list containing lists of eye-frames
# and a list containing lists of [(x,y), (x,y)] where x,y corner of left/right eye-frame
for image_list in list_of_image_lists:
eye_frames_lr = []
eye_frames_xy_in_orig_img = []
for image in image_list:
dets = detector(image, 1)
if len(dets) is not 0:
d = dets[0]
predictions = predictor(image, d)
shape = [(int(s.x), int(s.y)) for s in predictions.parts()]
original_eye_l_x, original_eye_l_y, left_eye_frame = ff.extract_eye(ff.LEFT_EYE_IDs, shape, image)
original_eye_r_x, original_eye_r_y, right_eye_frame = ff.extract_eye(ff.RIGHT_EYE_IDs, shape, image)
eye_frames_lr.append([left_eye_frame, right_eye_frame])
eye_frames_xy_in_orig_img.append(
[(original_eye_l_x, original_eye_l_y), (original_eye_r_x, original_eye_r_y)])
# print("eye_frames_lr:", eye_frames_lr)
list_of_eye_frame_lists.append(eye_frames_lr)
list_of_eye_frames_xy_in_orig_img.append(eye_frames_xy_in_orig_img)
# print("xy orig:", list_of_eye_frames_xy_in_orig_img)
# print("list_of_eye_frame_lists:", list_of_eye_frame_lists)
# create a list with lists of the xy-positions of left and right eye-frames, respectively
list_of_eyecenter_xy_lists = []
for eye_list in list_of_eye_frame_lists:
# ecd.center_detection returns list of [(xl ,yl) , (xr, yr)]'s
list_of_eyecenter_xy_lists.append(ecd.center_detection(eye_list, (thresholds[0], thresholds[1])))
# print("list_of_eyecenter_xy_lists:", list_of_eyecenter_xy_lists)
# find eye center coordinates in starting image
list_of_eyecenter_xys_in_starting_img_lists = []
for orig_list, centers_list in zip(list_of_eye_frames_xy_in_orig_img, list_of_eyecenter_xy_lists):
eyecenter_xys_in_starting_img_list = []
for ((orig_xl, orig_yl), (orig_xr, orig_yr)), ((eye_cxl, eye_cyl), (eye_cxr, eye_cyr)) in zip(orig_list,
centers_list):
eyecenter_xys_in_starting_img_list.append(
[(orig_xl + eye_cxl, orig_yl + eye_cyl), (orig_xr + eye_cxr, orig_yr + eye_cyr)])
list_of_eyecenter_xys_in_starting_img_lists.append(eyecenter_xys_in_starting_img_list)
# print("list of eyecenter_xys:", list_of_eyecenter_xys_in_starting_img_lists)
# calculate mean xys of left and right eye-centers
list_of_xys_to_map_lists = []
for xy_list in list_of_eyecenter_xys_in_starting_img_lists:
sum_xr, sum_yr, sum_xl, sum_yl = 0, 0, 0, 0
divisor = len(xy_list)
for ((xc_l, yc_l), (xc_r, yc_r)) in xy_list:
# print("xl,yl xr,yr:", xc_l, yc_l, xc_r, yc_r)
sum_xl = sum_xl + xc_l
sum_yl = sum_yl + yc_l
sum_xr = sum_xr + xc_r
sum_yr = sum_yr + yc_r
list_of_xys_to_map_lists.append(
[(round(sum_xl / divisor), round(sum_yl / divisor)), (round(sum_xr / divisor), round(sum_yr / divisor))])
mapping_xys_left = [(x, y) for ((x, y), (_, _)) in list_of_xys_to_map_lists]
mapping_xys_right = [(x, y) for ((_, _), (x, y)) in list_of_xys_to_map_lists]
return mapping_xys_left, mapping_xys_right
# fit polynom between two lists of x coordinates and two lists of y coordinates, respectively
def x_y_mapping_polynoms(eye_xs, calibration_xs, eye_ys, calibration_ys):
"""
:param eye_xs: list of eye x-coordinates
:param calibration_xs: list of calibration point x-coordinates of same length as eye_xs
:param eye_ys: list of eye y-coordinates
:param calibration_ys: list of calibration point y-coordinates of same length as eye_ys
:return: a polynom fitting the x-coordinates and a polynom fitting th y-coordinates
"""
x_coeffs = np.polyfit(eye_xs, calibration_xs, deg=2)
y_coeffs = np.polyfit(eye_ys, calibration_ys, deg=2)
eye_x_polynom = np.poly1d(x_coeffs)
eye_y_polynom = np.poly1d(y_coeffs)
#print("x polynom:", eye_x_polynom)
#print("y polynom:", eye_y_polynom)
return eye_x_polynom, eye_y_polynom
def get_polynoms(eye_center_xys, calibration_xys):
xs_for_polynom = [x for (x, y) in eye_center_xys]
ys_for_polynom = [y for (x, y) in eye_center_xys]
#xs_for_polynom = [xs_for_polynom[2], xs_for_polynom[5], xs_for_polynom[8],
# xs_for_polynom[1], xs_for_polynom[4], xs_for_polynom[7],
# xs_for_polynom[0], xs_for_polynom[3], xs_for_polynom[6]]
print("to map list:", eye_center_xys)
print("xs, ys ", xs_for_polynom, ys_for_polynom)
calib_xs, calib_ys = zip(*calibration_xys)
#x_coeff_vec, y_coeff_vec = least_squares_9x5(eye_center_xys, calibration_xys)
#polynom_creator = lambda a, b, c, e, f: lambda x, y: a[0] + b[0]*x + c[0]*y + e[0]*x*x + f[0]*y*y
#x_polynom = polynom_creator(*x_coeff_vec)
#y_polynom = polynom_creator(*y_coeff_vec)
x_polynom, y_polynom = x_y_mapping_polynoms(xs_for_polynom, calib_xs, ys_for_polynom, calib_ys)
return x_polynom, y_polynom
def least_squares_9x5(eyecenter_xys, screen_xys):
# create 9x5 matrix
A = []
screen_xs, screen_ys = zip(*screen_xys)
sx_vec = np.transpose(np.array([screen_xs])) # from 1x9 to 9x1
sy_vec = np.transpose(np.array([screen_xs])) # from 1x9 to 9x1
matrix_row = lambda eye_x, eye_y: [1, eye_x, eye_y, eye_x**2, eye_y**2]
for (eye_x, eye_y)in eyecenter_xys:
A.append(matrix_row(eye_x, eye_y))
A = np.array(A)
AT = np.transpose(A)
ATA = AT.dot(A)
ATsx_vec = AT.dot(sx_vec)
ATsy_vec = AT.dot(sy_vec)
x_coeff_vec = np.linalg.solve(ATA, ATsx_vec) # ATAx = ATb => x = (ATA)^-1ATb
y_coeff_vec = np.linalg.solve(ATA, ATsy_vec)
print("A", A)
print("AT", AT)
print("ATA", ATA)
print("sx_vec", sx_vec)
print("sy_vec", sy_vec)
print("ATsx_vec", ATsx_vec)
print("ATsy_vec", ATsy_vec)
print("x_coeff_vec", x_coeff_vec)
print("y_coeff_vec", y_coeff_vec)
return x_coeff_vec, y_coeff_vec