-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgcfun11.m
301 lines (255 loc) · 10.3 KB
/
gcfun11.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
function [ybbv,ybv,ycv,aav,bbv,ccv,fGG,fbbv,fwcv,fwsv1,fwsv2,fbcv,fbgv,rco2,pco2gca,fwgv,fmcv,fmgv,ggc,cgc,dg,dc]=gcfun11(myT,d13c)
global time ws gamma RUN ACT myfwc pco20 FERT acv dbckv fckc crit tnr dbcv
FERT=0.40;
ACT=0.05;%0.045
pco20=300;
XX=load('dat/LPEEkurtz/Sim2/GeoCarb3Dat.dat');
% GG=load('GEOGt.txt');
% GC=load('GC3intdata.dat'); %%% 1-million year step GEOCARB data -d13c
%(linearly interpolated between 57 and 52 Ma)and eps constant after 52Ma
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% USED FOR MASTER THESIS
%GC=load('GC3intdataOR.dat'); %%% 1 million year step ORIGINAL GEOCARB III
GC=load('dat/LPEEkurtz/Sim2/GC3intdataHil.dat'); %%% 1-million year step GEOCARB data -d13c
% from Hilting '08 and eps
% recalculated
% data
% Kurtz data + dickens13 for period between 50 and 62 Ma
%c13kurtz=load('C:\Users\Nemanja\Dropbox\geocarb\c13kurtz.dat');
c13kurtz=load('dat/LPEEkurtz/Sim2/c13kurtz2.DAT');
% dbc=[1.0000 1.7000 2.0000 2.2000 2.2000 1.3000 5.3000 2.4000 2.4000 2.5000 2.6000 2.7000 2.5000 2.0000 1.2000 1.7000 1.5400 1.3800 1.2200 1.0600 0.9000 0.7600 1.0000 2.0000 2.5000 3.0000 4.0000 4.5000 4.8000 5.0000 5.0000 4.8000 4.5000 4.0000 3.5000 3.0000 2.0000 1.5000 1.0000 1.0000 1.5000 2.0000 2.0000 1.5000 0.4000 0 -0.4000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000];
% fla=[1.0000 1.0000 0.9900 1.2900 1.0010 1.0 1.10 0.7656 0.6952 0.7128 0.8528 0.8840 0.9152 0.8944 0.8736 1.0292 1.0625 1.0875 1.1125 1.2376 1.2376 1.1070 1.1070 1.2232 1.2104 1.2298 1.1004 1.0611 1.0611 1.1600 1.1600 1.1600 1.1139 1.0857 1.0716 1.0293 0.9800 1.0143 1.0143 1.0584 1.2062 1.2062 1.1396 0.8866 0.9009 0.7705 0.6634 0.6634 0.6138 0.6435 0.6435 0.6402 0.6720 0.6930 0.5355 0.5670 0.5985 0.6300];
% fa=XX(:,11)';
% fd=XX(:,3)';
% fd=[fd.*fa];
% fg=XX(:,6)';
% alpha=[22 25 27 29 29 30.472 32.132 28 29 29 28 29 30 29 29 29 30 32 32 31 31 31 31 30 31 31 32 32 32 32 31 31 31 31 31 31 31 30 30 29 28 28 29 31 31 30 30 29 29 29 29 29 29 29 28 28 28 28];
% myFBGV=[5.0000 4.9243 5.0554 5.1703 5.2641 5.3883 5.4987 5.4957 5.3363 5.1974 5.1363 5.1394 5.1720 5.2954 5.4644 5.5581 5.5874 5.5220 5.3945 5.3004 5.2778 5.2328 5.1947 5.0973 4.8754 4.6745 4.5711 4.4540 4.4440 4.4584 4.4590 4.4269 4.3984 4.3974 4.4347 4.3709 4.3631 4.3479 4.3523 4.3394 4.2826 4.2878 4.4076 4.5178 4.5609 4.5640 4.5244 4.5125 4.5733 4.6654 4.6622 4.2529 3.7638 3.7620 4.0784 4.8746 5.5573 5.9508 6.0300 5.7816 5.4080 5.0751 4.8874];
% myFBGV=[5.0000 4.7606 4.8889 5.0030 5.0984 5.2217 5.3327 5.3399 5.2038 5.0844 5.0350 5.0461 5.0835 5.2018 5.3619 5.4558 5.4912 5.4402 5.3333 5.2567 5.2442 5.2270 5.2162 5.1546 4.9893 4.8467 4.7879 4.7165 4.7306 4.7634 4.7844 4.7507 4.7280 4.7277 4.7577 4.7051 4.6948 4.6767 4.6740 4.6563 4.6010 4.6529 4.7694 4.8779 4.9303 4.9499 4.9345 4.9418 5.0090 5.1020 5.1164 4.7911 4.4083 4.4309 4.7054 5.3541 5.9103 6.2350 6.3038 6.1044 5.8098 5.5252 5.3527];
nC=0.23;
nS=0.26;
geogt=XX(:,10)';
% fr=XX(:,4)';
% fc=XX(:,7)';
% fe=XX(:,5)';
% dbc=GC(:,1)';
% dbc=c13kurtz(2,:);
fla=GC(:,2)';
fd=GC(:,3)';
fg=GC(:,4)';
fr=GC(:,5)';
fe=GC(:,6)';
fc=GC(:,7)';
% alpha=GC(:,8)';
% See komar et al. 2013 to see how alpha is calculated
% to calculate we need d13c of total organic carbon at time t (dtoc)
% I am not sure where I saved this data but I know I calculated alpha
% correctly from it. That means I can use alpha to solve eq. 3 from komar
% et al. for dtoc. Even the dtoc is calculated it is the actual data. Now
% if we ever have a new dbc data we can alpha based on dtoc
% dtoc=((c13kurtz(2,:)+1000)./((alpha/1000)+1))-1000
alpha=c13kurtz(3,:); %new correct ep data based on kurtz d13c
mend=10;
% bf = 1 if you want to integrate from 570 BP forward and -1 if
% you want to integrate from present time backwards
bf=-1;
dk=57*mend*(1+bf)/2;
% Initial values and constants
% i is initial entry for variables
% j is initial entry for matrices
i=1+dk;
j=1+dk/mend;
ac=alpha(j);
kwc=0.0024; % default 0.00267; 0.0024 to get 12x10^12 mol/y
kwg=0.003; % default 0.003
% ACT=0.06; % default 0.09
% FERT=0.15; % default 0.4
ws=7.4; %GEOCARB II = 12.9, GEOCARB III = 7.4
gamma=ones(1,570)*4.33; % standard 3.3, 4.33=3 deg C
gamma(1,1:41)=4.0;
gamma(1,261:341)=4.0;
RUN=ones(1,570)*0.025;
RUN(1,1:41)=0.045;
RUN(1,261:341)=0.045;
% For testing, MAKE SURE TO REMOVE THIS AFTER!
% and make to remove "570" in 4 places in replace it
% with appropriate variables (t and 3 p's)
% dbc=ones(1,length(dbc)).*dbc(58);
% dbc=3+[1:71]./15;
% geogt=ones(1,length(geogt)).*geogt(58);
% fla=ones(1,length(fla)).*fla(58);
% fd=ones(1,length(fd)).*fd(58);
% fg=ones(1,length(fg)).*fg(58);
% fr=ones(1,length(fr)).*fr(58);
% fe=ones(1,length(fe)).*fe(58);
% fc=ones(1,length(fc)).*fc(58);
% alpha=ones(1,length(alpha)).*alpha(58);
% gamma=ones(1,570)*4.00;
% RUN=ones(1,570)*0.045;
% dbc(58)=6;
aav(1)=1;
bbv(1)=1;
ccv(1)=1;
ybbv(1)=1;
ybv(1)=1;
ycv(1)=1;
%ws=0;
% Use this section if you want C + G = 6250
x= 3.0; %default 2.0 2.06 1.9311
x1= 24.1875; %default 27.7 27.01 24.1875 24.755
% x= 2.0; %default 2.0 2.06 1.9311 -.0264
% x1= 21.2; %default 27.7 27.01 27.1875 21.2
dcv(1:80)=-4.0;
dbc0=0.2470; %% From Kurtz data, d13C at present.
cgc(i)=5000*(1-bf)/2+5005*(1+bf)/2;
ggc(i)=1250*(1-bf)/2+1245*(1+bf)/2;
dc(i)=x*(1-bf)/2+1.4454*(1+bf)/2;
dg(i)=-x1*(1-bf)/2-23.3787*(1+bf)/2;
fbc=17*(1-bf)/2+14.7133*(1+bf)/2;
fbg=5*(1-bf)/2+3.4767*(1+bf)/2;
r=(1-bf)/2+16.74*(1+bf)/2;
BIGD(i)=(fbg*(dbc0-alpha(j))+fbc*dbc0)/(fbg+fbc);
fbc0=fbc;
fbg0=fbg;
rco2(1)=r;
fwg=fd(j)*1*kwg*ggc(i);
time(i)=-570*(1+bf)/2;
t=-time(i);
fwg0=fwg;
cc=1-0.087*ws*t/570;
fbb=(cc+gamma(t+1)*0.087*log(r))*sqrt(r);
fwc=fbb*fla(j)*fd(j)*fe(j)*kwc*cgc(i);
fmg0=((dbc0*fbc+(dbc0-alpha(1))*fbg-dc(1)*fwc+dcv(1)*fwc-dcv(1)*(fbc+fbg))/(dg(1)-dcv(1)))-kwg*1250;
fmg=fg(j)*fmg0;
fmc0=fbc+fbg-kwc*5000-kwg*1250-fmg0;
fwc0=fwc;
% [fmg0 fmc0 fwc0 fwg0 fbc0 fbg0]
% fmg0+fmc0+fwc0+fwg0-(fbc0+fbg0)
% return
fmc=fg(j)*fc(j)*fmc0;
fwsi0=fbc-fwc;
fwsv2(1)=fwsi0;
fwsv1(1)=fwsi0;
dbcv(1)=dbc0;
p=i;
tnr=0.0001;
L=[0:10:570]'; %
X=[0:1:570]';
P=[geogt]; %
fGG=interp1(L,P,X);
fbbv(1)=fbb;
fbcv(1)=fbc0;
fbgv(1)=fbg0;
fwcv(1)=fwc0;
fmcv(1)=fmc0;
fwgv(1)=fwg0;
fmgv(1)=fmg0;
pco2gca(1)=rco2(1)*pco20;
if(myT>1)
% for k=1:62;
cgc(1)=cgc(1);%-bf*(fwc+fmc-fbc)*10/mend;
ggc(1)=ggc(1);%-bf*(fwg+fmg-fbg)*10/mend;
dg(1)=dg(1);%-bf*(fbg*(ac+dg(p)-dbck)/ggc(p))*10/mend;
dc(1)=dc(1);%-bf*(fbc*(dc(p)-dbck)/cgc(p))*10/mend;
p=myT;
time(1)=-10*(p-1)/mend;
t=-time(1);
if(p>1)
dg(1)=-21.2;
dc(1)=+2.0;
dcv(1)=-4.0;
else
dg(1)=-24.1875;
dc(1)=+3.0;
dcv(1)=-4.0;
end
% dbck=interp1(L,dbc,k);
% flak=interp1(L,fla,k);
% fdk=interp1(L,fd,k);
% fgk=interp1(L,fg,k);
% frk=interp1(L,fr,k);
% fek=interp1(L,fe,k);
% fck=interp1(L,fc,k);
% ac=interp1(L,alpha,k);
dbck=d13c;
flak=fla(p);
fdk=fd(p);
fgk=fg(p);
frk=fr(p);
fek=fe(p);
fck=fc(p);
ac=alpha(p);
flakc(1)=flak;
fdkc(1)=fdk;
fckc(1)=fck;
fekc(1)=fek;
frkc(1)=frk;
fgkc(1)=fgk;
acv(1)=ac;
dbckv(1)=dbck;
% Solve for fmc, fmg, and fwg using equations 4-6
fmc=fgk*fck*fmc0;%8.7660;
fmg=fgk*fmg0;
fwg=fdk*frk*kwg*ggc(1);
% Set up constants needed to solve for r, fB, and fBB
aa=exp(-ACT*ws*p/570)*exp(ACT*fGG(p));
bb=1-RUN(p)*ws*p/570;
cc=1-0.087*ws*p/570;
ybb=flak*fdk*fek*kwc*cgc(1)*(dbck-dc(1));
yb=ac*frk*fek*fwsi0*fdk^0.65;
yc=(fmc+fwg+fmg)*(dbck-ac)-dcv(p)*fmc-dg(1)*(fwg+fmg);
aav(1)=aa;
bbv(1)=bb;
ccv(1)=cc;
ybbv(1)=ybb;
ybv(1)=yb;
ycv(1)=yc;
% Iterate to solve for r, fB and fBB using equations 3 and 11
% Crit must be less than tnr to terminate the Newton-Raphson
crit=1;
if t <= 350
% This is during time of vascular plants
while crit >= tnr;
fb=aa*r^(ACT*gamma(p))*(bb+(gamma(p)*RUN(p))*log(r)+RUN(p)*fGG(p))^0.65*(2*r/(1+r))^FERT;
fbb=(cc+gamma(p)*0.087*log(r)+0.087*fGG(p))*(2*r/(1+r))^FERT;
dfb=(fb/r)*((ACT*gamma(p))+(0.65*RUN(p)*gamma(p))/(bb+(gamma(p)*RUN(p))*log(r)+RUN(p)*fGG(p))+FERT/(1+r));
dfbb=(fbb/r)*((gamma(p)*0.087)/(cc+gamma(p)*0.087*log(r)+0.087*fGG(p))+FERT/(1+r));
y=fbb*ybb+fb*yb+yc;
dy=dfbb*ybb+dfb*yb;
crit=abs(y/dy);
r=r-y/dy;
end;
end
pco2gca(1)=rco2(1)*pco20;
rco2(1)=r;
pco2gca(1)=pco20*rco2(1);
fbbv(1)=fbb;
fbch(1)=fb;
% Solve for Fwc using equation 3
fwc=fbb*flak*fdk*fek*kwc*cgc(1);
fws=fb*frk*fek*fdk^0.65*fwsi0;
myfwc(1)= (rco2(1)/1)^nC*kwc*cgc(1)*flak*fdk*fek;
% Solve for Fbc and Fbg using equations 1-2
% fbcv(1)=fbc0;
% fbgv(1)=fbg0;
fwcv(1)=fwc;
fmcv(1)=fmc;
fwgv(1)=fwg;
fmgv(1)=fmg;
acv(1)=c13kurtz(3,1);
fbc=(dc(1)*fwc+dcv(p)*fmc+dg(1)*(fwg+fmg)-(fwc+fmc+fwg+fmg)*(dbck-ac))/ac;
fbg=fwc+fmc+fwg+fmg-fbc;
% f = @(X)fwc+fmc+fwg+fmg-myFBGV(p)-((dc(p)*fwc+dcv(p)*fmc+dg(p)*(fwg+fmg)-(fwc+fmc+fwg+fmg)*(X-ac))/ac);
% z = fzero(f,3);
% fbc=(dc(p)*fwc+dcv(p)*fmc+dg(p)*(fwg+fmg)-(fwc+fmc+fwg+fmg)*(z-ac))/ac;
% BalCheck=fwc+fmc+fwg+fmg-fbc-myFBGV(p)
BIGD(1)=(fbg*(dbc0-alpha(j))+fbc*dbc0)/(fbg+fbc);
fbcv(1)=fbc;
fbgv(1)=fbg; %myFBGV(p)
fwsv1(1)=fbc-fwc;
fwsv2(1)=fws;%fwsi0*((pco2gca(p)/pco20)^nS)*frk*fek*fdk^0.65;
myfws(1)=(rco2(1)/1)^nS*6.65;
end
% dbcv(p)=z;
% end
% DBC=(dc(58)*fwcv(58)+dcv(58)*fmcv(58)+dg(58)*(fwgv(58)+fmgv(58))+acv(58)*fbgv(58))/(fbcv(58)+fbgv(58))
return;