-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinductive_gat.py
129 lines (119 loc) · 4.25 KB
/
inductive_gat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import json
import networkx as nx
from networkx.readwrite import json_graph
import torch
import torch.nn.functional as F
from dgl import DGLGraph
from sklearn.metrics import f1_score
from sklearn.preprocessing import StandardScaler
from gat import GAT
device = torch.device('cuda:1')
def process_p2p():
print('Loading G...')
with open('ppi/ppi-G.json') as jsonfile:
g_data = json.load(jsonfile)
with open('ppi/ppi-class_map.json') as jsonfile:
class_map = json.load(jsonfile)
features = np.load('ppi/ppi-feats.npy')
label_list = []
for i in range(len(class_map)):
label_list.append(np.expand_dims(np.array(class_map[str(i)]), axis=0))
labels = np.concatenate(label_list)
G = nx.DiGraph(json_graph.node_link_graph(g_data))
### train_mask = [node['id'] for node in g_data['nodes']
### if node['test'] is False and node['val'] is False]
test_mask = [node['id'] for node in g_data['nodes']
if node['test'] is True]
valid_mask = [node['id'] for node in g_data['nodes']
if node['val'] is True]
graph_id = np.load('./ppi/graph_id.npy')
train_mask_list = []
for train_graph_id in range(1, 21):
train_mask_list.append(np.where(graph_id==train_graph_id)[0])
return G, features, labels, train_mask_list, test_mask, valid_mask
graph, features, labels, train_mask_list, test_mask, valid_mask = process_p2p()
train_feats = features[np.concatenate(train_mask_list)]
scaler = StandardScaler()
scaler.fit(train_feats)
features = scaler.transform(features)
features = torch.from_numpy(features).float().to(device)
labels = torch.from_numpy(labels).to(device)
g = DGLGraph(graph)
n_classes = labels.size()[1]
num_feats = features.size()[1]
batch_size = 2
cur_step = 0
patience = 10
batch_list = []
for batch_index in range(len(train_mask_list)//batch_size):
begin_index = batch_index * batch_size
end_index = (batch_index+1) * batch_size
batch_list.append(np.concatenate(train_mask_list[begin_index:end_index]))
def evaluate(mask, model):
with torch.no_grad():
model.eval()
model.g = g.subgraph(mask)
for layer in model.gat_layers:
layer.g = g.subgraph(mask)
output = model(features[mask].float())
loss_data = loss_fcn(output, labels[mask].float())
predict = np.where(output.data.cpu().numpy() >= 0.5, 1, 0)
score = f1_score(labels[mask].data.cpu().numpy(),
predict, average='micro')
print("F1-score: {:.4f} ".format(score))
return score, loss_data.item()
best_score = -1
best_loss = 10000
best_model = None
best_loss_curve = []
val_early_loss = 10000
val_early_score = -1
model = GAT(g,
num_feats,
256,
n_classes,
[4, 4, 6],
F.elu,
0.0001,
0.0001,
0.2,
True)
loss_fcn = torch.nn.BCEWithLogitsLoss()
# use optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.005)
model = model.to(device)
save_loss = []
for epoch in range(200):
model.train()
loss_list = []
for train_batch in batch_list:
model.g = g.subgraph(train_batch)
for layer in model.gat_layers:
layer.g = g.subgraph(train_batch)
input_feature = features[train_batch]
logits = model(input_feature)
loss = loss_fcn(logits, labels[train_batch].float())
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_list.append(loss.item())
loss_data = np.array(loss_list).mean()
save_loss.append(loss_data)
print("Epoch {:05d} | Loss: {:.4f}".format(epoch + 1, loss_data))
if epoch % 5 == 0:
score, val_loss = evaluate(valid_mask, model)
if score > best_score or best_loss>val_loss:
if score > best_score and best_loss > val_loss:
val_early_loss = val_loss
val_early_score = score
best_score = np.max((score, best_score))
best_loss = np.min((best_loss, val_loss))
cur_step = 0
else:
cur_step+=1
if cur_step==patience:
break
evaluate(test_mask, model)
np.save('./gat.npy', np.array(save_loss))
torch.save(model.state_dict(), './best_gat.ckpt')