-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
1100 lines (904 loc) · 46.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""pipeline.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1or18eWRoJialGcp64RLnJCS3GftlzBo8
"""
import torchvision
print(torchvision.__version__)
import subprocess
import sys
import asyncio
# import boto3
import clip
import cv2
# import dlib
import ffmpeg
import getpass
import glob
import io
import json
import logging
import matplotlib.pyplot as plt
import nest_asyncio
import numpy as np
import openai
import os
import pandas as pd
import random
import re
import requests
import shutil
import speech_recognition as sr
import tensorflow as tf
import tensorflow_hub as hub
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
import yt_dlp
from diffusers import (StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline,
StableDiffusionInstructPix2PixPipeline, StableDiffusionPipeline,
EulerAncestralDiscreteScheduler, LMSDiscreteScheduler)
# from google.colab import output
from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from googleapiclient.errors import HttpError
from googleapiclient.http import MediaIoBaseUpload
from IPython.display import Markdown, display
from io import BytesIO
# from langchain import OpenAI, LLMChain, PromptTemplate
from moviepy.editor import VideoFileClip
from pathlib import Path
from PIL import Image
# from pyannote.audio import Pipeline
from pydub import AudioSegment
from pytube import YouTube
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from telegram import Update
from telegram.ext import Application, CommandHandler, MessageHandler, CallbackContext, filters
from transformers import (AutoModelForCausalLM, AutoProcessor, AutoTokenizer, BlipForConditionalGeneration,
BlipProcessor, CLIPModel, CLIPProcessor, CLIPSegForImageSegmentation,
CLIPSegProcessor, CLIPTokenizer, VisionEncoderDecoderModel,
ViTFeatureExtractor, pipeline, ViTImageProcessor, T5ForConditionalGeneration, T5Tokenizer)
from ultralytics import YOLOWorld
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
"""# Load API keys"""
def load_api_keys(api_key_file_path):
"""Load API keys from a given file path."""
keys = {}
with open(api_key_file_path, 'r') as file:
for line in file:
if '=' in line:
key, value = line.strip().split('=', 1)
keys[key.strip()] = value.strip()
return keys
api_key_file_path = './api_keys.txt'
api_keys = load_api_keys(api_key_file_path)
def build_youtube_client(api_key):
"""Build and return the YouTube client."""
return build('youtube', 'v3', developerKey=api_key)
def initialize_openai(api_key):
"""Initialize the OpenAI client."""
openai.api_key = api_key
def initialize_stability_api(api_key):
"""Initialize the Stability API with the provided API key."""
return api_key
excel_file = r'G:\My Drive\Capstone\DataFrame\videos_df_final v20.xlsx'
videos_df = pd.read_excel(excel_file, index_col=0)
print(videos_df.head())
def generate_query_embeddings(image, query_text):
# Load CLIP model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
#preprocess = BlipProcessor.from_pretrained('Salesforce/blip-image-captioning-base')
#model = BlipForConditionalGeneration.from_pretrained('Salesforce/blip-image-captioning-base').to(device)
# Generate embedding for the query image
query_image = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
query_image_features = model.encode_image(query_image)
query_image_embedding = query_image_features.cpu().numpy()
max_length = 100 # Adjust the maximum length as needed
if len(query_text) > max_length:
query_text = query_text[:max_length]
# Generate embedding for the query text
query_text_token = clip.tokenize([query_text]).to(device)
with torch.no_grad():
query_text_features = model.encode_text(query_text_token)
query_text_embedding = query_text_features.cpu().numpy()
return query_text_embedding, query_image_embedding
def search_videos(query_embedding, videos_df, category, top_k=1):
# Filter videos based on category
category_videos_df = videos_df[videos_df['category'] == category]
# Filter videos based on duration (< 60 seconds)
filtered_videos_df = category_videos_df[category_videos_df['duration'] < 60]
# Debug: Print the number of videos in the category_videos_df DataFrame
print(f"Number of videos in the '{category}' category: {len(category_videos_df)}")
# Debug: Print the number of videos in the filtered_videos_df DataFrame
print(f"Number of videos in the '{category}' category with duration < 60 seconds: {len(filtered_videos_df)}")
# Debug: Print the video IDs and titles of the videos in the category_videos_df DataFrame
print(f"Video IDs and titles in the '{category}' category:")
for index, row in category_videos_df.iterrows():
print(f"Video ID: {row['video_id']}, Title: {row['title']}")
# Debug: Print the video IDs and titles of the videos in the filtered_videos_df DataFrame
print(f"Video IDs and titles in the '{category}' category with duration < 60 seconds:")
for index, row in filtered_videos_df.iterrows():
print(f"Video ID: {row['video_id']}, Title: {row['title']}")
# Get the combined embeddings from the filtered DataFrame
combined_embeddings = filtered_videos_df['combined_embedding'].tolist()
for embedding in filtered_videos_df['combined_embedding']:
if isinstance(embedding, np.ndarray) and not np.isnan(embedding).any():
combined_embeddings.append(embedding)
else:
combined_embeddings.append(None) # Handle cases where embedding is not an ndarray or contains NaN
# Calculate the cosine similarity between the query embedding and combined embeddings
similarity_scores = []
for index, row in filtered_videos_df.iterrows():
embedding = row['combined_embedding']
if isinstance(embedding, list) or isinstance(embedding, np.ndarray):
embedding = np.array(embedding)
if not np.isnan(embedding).any():
similarity = cosine_similarity([query_embedding], [embedding])[0][0]
similarity_scores.append(similarity)
else:
similarity_scores.append(0) # Handle NaN values gracefully
else:
similarity_scores.append(0) #
# Get the index of the video with the highest similarity score
top_index = np.argmax(similarity_scores)
# Return the top video from the filtered DataFrame
return filtered_videos_df.iloc[top_index]
async def get_video_file(video_data):
video_directory = "G:\\My Drive\\Capstone\\Shorts\\"
category_folder = video_data['category']
video_id = video_data['video_id']
print(f"Video Directory: {video_directory}")
print(f"Category Folder: {category_folder}")
print(f"Video ID: {video_id}")
# Construct the path to the category directory
category_directory = os.path.join(video_directory, category_folder)
print(f"Category Directory: {category_directory}")
if os.path.exists(category_directory):
for filename in os.listdir(category_directory):
# video_id = 'Tvt14SaKduk'
if filename.startswith(video_id):
video_path = os.path.join(category_directory, filename)
# video_path = 'G:\\My Drive\\Capstone\\Shorts\\Fashion And Apparel\\Tvt14SaKduk-How To Layer Essentials | Styling Advice | Fashion Tips | Over Fifty Fashion | Carla Rockmore.mp4'
print(f"Found video file: {video_path}") # Debugging print
return video_path
else:
print(f"Category directory does not exist: {category_directory}") # Debugging print
print("Video file not found for video_id:", video_id) # Debugging print
return None
async def generate_recommendation_reason(video_data, customer_input):
system_prompt = "You are an AI assistant that provides a reason for recommending a video based on its textual data and the customer's input. Customer is an e-commerce seller on TikTok Shop or Shopee in Indonesia"
prompt = f"Based on the following video data and customer input, provide a reason why this video is a good recommendation:\n\nVideo Data:\nVideo ID: {video_data['video_id']}\nTitle: {video_data['title']}\nCaption: {video_data['captions']}\nDescription: {video_data['description']}\nPublish Time: {video_data['publish_time']}\nViews: {video_data['views']}\nLikes: {video_data['likes']}\nDislikes: {video_data['dislikes']}\nComment Count: {video_data['comment_counts']}\nDuration: {video_data['duration']}\nComments: {video_data['comments']}\nCategory: {video_data['category']}\nCOT: {video_data['COT']}\nTranscript: {video_data['transcription']}\nAnalysis: {video_data['analysis']}\n\nCustomer Input:\n{customer_input}"
response = openai.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": f"{system_prompt}"},
{"role": "user", "content": f'{prompt}'}
],
max_tokens=800,
n=1,
temperature=0.6,
)
return response.choices[0].message.content.strip()
def extract_product_from_image(image):
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# Convert the image to the format expected by the model
inputs = processor(image, return_tensors="pt")
# Generate the image caption
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
def find_closest_category(product_description, videos_df):
categories = videos_df['category'].unique()
# Prepare the prompt for OpenAI
system_prompt = "You are an AI assistant that identifies the closest category for a given product description."
prompt = f"Given the following product description, identify the closest category from the list of categories:\n\nProduct Description: {product_description}\nCategories: {', '.join(categories)}, answer succinctly"
response = openai.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": f"{system_prompt}"},
{"role": "user", "content": f'{prompt}'}
],
max_tokens=50,
n=1,
temperature=0.6,
)
closest_category = response.choices[0].message.content.strip()
return closest_category
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
print("Loading pre-trained models...")
# Load the pre-trained Stable Diffusion Instruct Pix2Pix model
#pix2pix_model_id = "timbrooks/instruct-pix2pix"
#pix2pix_pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(pix2pix_model_id, torch_dtype=torch.float16)
#pix2pix_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pix2pix_pipeline.scheduler.config)
#pix2pix_pipeline.to(device)
# Load the pre-trained Stable Diffusion model
#stable_diffusion_model_id = "CompVis/stable-diffusion-v1-4"
#stable_diffusion_pipeline = StableDiffusionPipeline.from_pretrained(stable_diffusion_model_id, torch_dtype=torch.float16)
#stable_diffusion_pipeline.to(device)
# Load the YOLO v5 object detection model
yolo_model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# Load the image-to-text model
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
# Load the text similarity model
text_similarity_model = pipeline("feature-extraction", model="sentence-transformers/all-MiniLM-L6-v2")
# Load the image embedding model
# image_embedding = pipeline("image-feature-extraction", model="openai/clip-vit-base-patch32")
print("Models loaded successfully!")
few_shot_learnings = '''
Generate a detailed prompt for an image based on the given object description and the memory dataframe. The prompt should follow these guidelines:
* Be specific: Describe the image's subject and context, and add context that relates to the page's topic
* Keep it short: Keep the prompt under 125 characters
* Avoid starting with "picture of..." or "Image of...": Jump right into the image's description
* Use keywords sparingly: Don't cram keywords into every image's prompt
* Review for spelling errors: Make sure your prompt is error free
* Don't mention any humans or people in the prompt, focus only on the objects and products
* Mention the color of the objects and products in the prompt
* Consider the previous frames and object descriptions from the memory dataframe to maintain consistency
* Describe the object as detailed as possible
'''
def send_generation_request(host, params):
headers = {
"Accept": "image/*",
"Authorization": f"Bearer {STABILITY_API_KEY}"
}
# Encode parameters
files = {}
image = params.pop("image", None)
mask = params.pop("mask", None)
if image is not None:
if isinstance(image, str) and image != '':
files["image"] = open(image, 'rb')
elif isinstance(image, Image.Image):
image_bytes = BytesIO()
image.save(image_bytes, format='PNG')
image_bytes.seek(0)
files["image"] = image_bytes
if mask is not None and mask != '':
files["mask"] = open(mask, 'rb')
if len(files) == 0:
files["none"] = ''
# Send request
print(f"Sending REST request to {host}...")
response = requests.post(
host,
headers=headers,
files=files,
data=params
)
if not response.ok:
raise Exception(f"HTTP {response.status_code}: {response.text}")
return response
def detect_objects(image):
# Perform object detection using YOLO v5
results = yolo_model(image)
# Process the detection results and extract bounding boxes
bounding_boxes = []
for detection in results.xyxy[0]:
if detection[-1] == 0: # Class 0 represents person
x1, y1, x2, y2, _, _ = detection
bounding_boxes.append([int(x1), int(y1), int(x2-x1), int(y2-y1)])
return bounding_boxes
def generate_prompt(memory_df, object_description):
memory_info = memory_df.to_string(index=False)
response = openai.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": few_shot_learnings},
{"role": "user", "content": f"Memory:\n{memory_info}\n\nObject Description: {object_description}"}
],
max_tokens=150,
n=1,
temperature=0.7,
)
return response.choices[0].message.content.strip()
def evaluate_similarity(memory_df, bounding_boxes):
# Calculate the average similarity score across all objects in the current frame
avg_similarity = memory_df.iloc[-len(bounding_boxes):]["Similarity"].mean()
return avg_similarity
def visualize_similarity(similarity_scores):
# Plot similarity scores
plt.figure(figsize=(8, 6))
plt.plot(range(len(similarity_scores)), similarity_scores)
plt.xlabel("Frame")
plt.ylabel("Similarity Score")
plt.title("Similarity Score over Frames")
plt.tight_layout()
# Save the visualization
similarity_plot_path = "G:\\My Drive\\Capstone\\Agents\\similarity_scores.png"
plt.savefig(similarity_plot_path)
plt.close()
print(f"Similarity score plot saved: {similarity_plot_path}")
def initialize_image_embedding_model():
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
return model, processor
def first_image_embedding(image, model, processor):
inputs = processor(images=image, return_tensors="pt")
image_features = model.get_image_features(**inputs)
image_embedding = image_features.detach().numpy().flatten()
return image_embedding
def print_video_details(video_path, description):
"""Print details of a video file to help with debugging."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Failed to open video: {video_path}")
return
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"{description} - Length (frames): {length}, FPS: {fps}, Width: {width}, Height: {height}")
cap.release()
def adjust_video_properties(source_path, target_path, target_fps, target_resolution):
"""Adjusts the frame rate and resolution of a video."""
cap = cv2.VideoCapture(source_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(target_path, fourcc, target_fps, target_resolution)
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, target_resolution)
out.write(frame)
cap.release()
out.release()
def clear_folder(folder_path):
# This function will delete all files in the specified folder
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove each file
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove entire subdirectories
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
# Initialize the image embedding model
image_embedding_model, image_embedding_processor = initialize_image_embedding_model()
def generate_video_frames(image_path, num_seconds, image_embedding_model, image_embedding_processor, text_similarity_model):
print(f"\nGenerating video frames for {num_seconds} seconds...")
# Load the input image using PIL
input_image = Image.open(image_path)
print("Input image loaded.")
# Generate a caption for the input image
input_image_caption = image_to_text(input_image)[0]["generated_text"]
print(f"Input Image Caption: {input_image_caption}")
# Generate the initial prompt
initial_prompt = generate_prompt(pd.DataFrame(), input_image_caption)
print(f"Initial Prompt: {initial_prompt}")
# Generate the first frame using Stability AI API based on the initial prompt
print("Generating the first frame...")
host = f"https://api.stability.ai/v2beta/stable-image/generate/sd3"
params = {
"image": input_image,
"prompt": initial_prompt,
"strength": 1,
"seed": 10,
"output_format": "jpeg",
"mode": "image-to-image",
"model": "sd3-turbo"
}
response = send_generation_request(host, params)
output_image = response.content
# Create a BytesIO stream from the response content
# image_stream = BytesIO(output_image)
first_frame = Image.open(BytesIO(output_image))
print("First frame generated.")
display(first_frame)
# Convert the first frame to OpenCV format
first_frame_cv = cv2.cvtColor(np.array(first_frame), cv2.COLOR_RGB2BGR)
print("First frame processed and displayed.")
# Perform object detection on the first frame
print("Performing object detection on the first frame...")
bounding_boxes = detect_objects(first_frame_cv)
print(f"Detected {len(bounding_boxes)} objects in the first frame.")
input_image_embedding = first_image_embedding(input_image, image_embedding_model, image_embedding_processor)
# Initialize the memory dataframe with the input image and its caption
memory_df = pd.DataFrame({
"Frame": [0],
"Object": [input_image],
"Caption": [input_image_caption],
"Caption Embedding": [text_similarity_model(input_image_caption)[0][0]], # Add this line
"Image Embedding": [input_image_embedding],
"Similarity": [1.0],
"Prompt": [initial_prompt]
})
# Initialize the similarity scores list
similarity_scores = [1.0] # First frame has a similarity score of 1.0 with the input image
frames = [first_frame_cv]
# for second in range(1, num_seconds + 1): # Inclusive range for the number of seconds
for second in range(1, num_seconds + 1): # Inclusive range for the number of seconds
# print(f"\nGenerating frame {second}...")
print(f"\nGenerating frame {second}...")
frame = first_frame_cv.copy()
for bbox in bounding_boxes:
x, y, width, height = bbox
# Crop the object from the frame
cropped_object = frame[y:y+height, x:x+width]
# Convert the cropped object to PIL image
cropped_object_pil = Image.fromarray(cv2.cvtColor(cropped_object, cv2.COLOR_BGR2RGB))
# Generate image-to-text description of the cropped object
object_description = image_to_text(cropped_object_pil)[0]["generated_text"]
print(f"Object Description: {object_description}")
# Generate image embedding for the cropped object
cropped_object_embedding = first_image_embedding(cropped_object_pil, image_embedding_model, image_embedding_processor)
# Check similarity with previous object descriptions and embeddings in memory
similarities = []
for _, row in memory_df.iterrows():
if 'Caption Embedding' not in memory_df.columns:
memory_df['Caption Embedding'] = memory_df['Caption'].apply(lambda x: text_similarity_model(x)[0][0])
caption_embedding = row["Caption Embedding"]
# Check if 'Image Embedding' column exists in memory_df
if 'Image Embedding' not in memory_df.columns:
memory_df['Image Embedding'] = memory_df['Object'].apply(lambda x: first_image_embedding(x, image_embedding_model, image_embedding_processor))
image_embedding = row["Image Embedding"]
# Calculate cosine similarity between text embeddings
text_similarity = cosine_similarity([text_similarity_model(object_description)[0][0]], [caption_embedding])[0][0]
# Calculate cosine similarity between image embeddings
image_similarity = cosine_similarity([cropped_object_embedding], [image_embedding])[0][0]
# Combine text and image similarity scores
combined_similarity = (text_similarity + image_similarity) / 2
similarities.append(combined_similarity)
max_similarity = max(similarities)
most_similar_index = similarities.index(max_similarity)
if 0 <= most_similar_index < len(memory_df):
most_similar_object = memory_df.iloc[most_similar_index]["Object"]
most_similar_caption = memory_df.iloc[most_similar_index]["Caption"]
else:
most_similar_object = None
most_similar_caption = ""
print(f"Max Similarity Score: {max_similarity}")
# Update memory dataframe
new_row = pd.DataFrame({
"Frame": [second],
"Object": [cropped_object_pil],
"Caption": [object_description],
"Caption Embedding": [text_similarity_model(object_description)[0][0]],
"Image Embedding": [cropped_object_embedding],
"Similarity": [max_similarity],
"Prompt": ""
})
memory_df = pd.concat([memory_df, new_row], ignore_index=True)
# Check if the similarity is above the threshold
similarity_threshold = 0.7
generated_image = cropped_object_pil
if max_similarity < similarity_threshold:
print(f"Similarity below threshold. Generating new prompt.")
print("Memory:")
print(memory_df)
prompt = generate_prompt(memory_df, object_description)
# Update the prompt in the memory dataframe
memory_df.at[len(memory_df) - 1, "Prompt"] = prompt
print(f"Stability AI Prompt:\n{prompt}")
# Generate an image with the updated prompt using Stability AI API
print("Generating image using Stability AI API...")
host = f"https://api.stability.ai/v2beta/stable-image/generate/sd3"
params = {
"prompt": prompt,
"strength": 1,
"seed": 10,
"output_format": "jpeg",
"mode": "image-to-image" if second == 1 else "text-to-image",
"model": "sd3-turbo"
}
if second == 1:
params["image"] = cropped_object_pil
response = send_generation_request(host, params)
generated_image = Image.open(BytesIO(response.content))
print("Image generated.")
# Display the generated image
display(generated_image)
# Generate image-to-text description of the generated image
generated_image_description = image_to_text(generated_image)[0]["generated_text"]
# Generate image embedding for the generated image
generated_image_embedding = first_image_embedding(generated_image, image_embedding_model, image_embedding_processor)
# Check similarity between the generated image description and embedding with the object description and embedding
text_similarity_score = cosine_similarity([text_similarity_model(object_description)[0][0]], [text_similarity_model(generated_image_description)[0][0]])[0][0]
image_similarity_score = cosine_similarity([cropped_object_embedding], [generated_image_embedding])[0][0]
max_similarity = (text_similarity_score + image_similarity_score) / 2
# Paste the generated object back into the frame
frame[y:y+height, x:x+width] = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
# Evaluate the similarity score of the generated frame
similarity_score = evaluate_similarity(memory_df, bounding_boxes)
similarity_scores.append(similarity_score)
print(f"Similarity Score: {similarity_score}")
frames.append(frame)
# Save the generated frame
frame_path = fr"G:\My Drive\Capstone\Agents\image\frame_{second}.jpg"
cv2.imwrite(frame_path, frame)
print(f"Generated frame saved: {frame_path}")
# Visualize the frame
plt.figure(figsize=(8, 6))
plt.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
plt.title(f"Generated Frame {second}")
plt.axis("off")
plt.tight_layout()
# visualization_path = f"/content/drive/MyDrive/Capstone/Agents/frame_{second}_visualization.jpg"
# plt.savefig(visualization_path)
plt.close()
# print(f"Frame visualization saved: {visualization_path}")
print(f"Frame visualization saved: {frame_path}")
visualize_similarity(similarity_scores)
return frames, similarity_scores
import subprocess
ffmpeg_executable = r'D:\Capstone (Vidia.AI)\Capstone (Vidia.AI)\ffmpeg\ffmpeg.exe' # Use a raw string
def create_video_from_image(image_path, temp_video_path, duration=2, frame_rate=25):
command = [
ffmpeg_executable,
'-loop', '1',
'-t', str(duration),
'-i', image_path, # Do not quote the path
'-vf', 'scale=320x240,setsar=1',
'-framerate', str(frame_rate),
'-c:v', 'libx264',
'-pix_fmt', 'yuv420p',
'-y', temp_video_path # Do not quote the path
]
process = subprocess.run(command, capture_output=True, text=True)
print(f"Creating video from {image_path}")
print("Command:", ' '.join(command))
print("stdout:", process.stdout)
print("stderr:", process.stderr)
if process.returncode != 0:
print(f"Error creating video from {image_path}. Error: {process.stderr}")
raise RuntimeError(f"ffmpeg failed with error: {process.stderr}")
def first_stitch_videos(video_paths, output_video_path, frame_rate=25):
command = [ffmpeg_executable]
for path in video_paths:
command += ['-i', path] # Add each video file input
filter_complex = f'concat=n={len(video_paths)}:v=1:a=0[outv]' # assuming there's no audio to concat
command += [
'-filter_complex', filter_complex,
'-map', '[outv]',
'-c:v', 'libx264',
'-r', str(frame_rate),
'-pix_fmt', 'yuv420p',
'-y', output_video_path
]
process = subprocess.run(command, capture_output=True, text=True)
print(f"Stitching videos into {output_video_path}")
print("Command:", ' '.join(command))
print("stdout:", process.stdout)
print("stderr:", process.stderr)
def adjust_video_properties(input_video_path, output_video_path, target_fps, target_resolution):
command = [
ffmpeg_executable,
'-i', input_video_path,
'-vf', f'scale={target_resolution[0]}:{target_resolution[1]}',
'-r', str(target_fps),
'-c:v', 'libx264',
'-pix_fmt', 'yuv420p',
'-y', output_video_path
]
subprocess.run(command, capture_output=True, text=True)
print(f"Adjusted video saved to {output_video_path}")
def second_stitch_videos(video_paths, output_video_path, frame_rate=24, resolution=(768, 768)):
# Prepare input arguments for ffmpeg
inputs = []
for path in video_paths:
inputs.extend(['-i', path])
# Prepare filter arguments for scaling and setting frame rate
filters = []
for i in range(len(video_paths)):
filters.append(f'[{i}:v]scale={resolution[0]}:{resolution[1]},setsar=1,fps=fps={frame_rate}[v{i}]')
# Create the filter complex for concatenating videos
filter_complex = ';'.join(filters)
filter_complex += f";{''.join(f'[v{i}]' for i in range(len(video_paths)))}concat=n={len(video_paths)}:v=1:a=0[outv]"
# Assemble the complete command
command = [ffmpeg_executable, *inputs, '-filter_complex', filter_complex, '-map', '[outv]', '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-y', output_video_path]
# Run the command
process = subprocess.run(command, capture_output=True, text=True)
print("Command:", ' '.join(command))
print("stdout:", process.stdout)
print("stderr:", process.stderr)
#logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
#logger = logging.getLogger(__name__)
async def process_video_generation(image_input_path):
print(f"Processing video for image: {image_input_path}")
base_path = r"G:\My Drive\Capstone\Agents"
image_folder = base_path + r"\image"
video_folder = base_path + r"\video"
final_folder = base_path + r"\final"
adjusted_folder = base_path + r"\adjusted"
# Ensure folders exist and clear them
for folder in [image_folder, video_folder, final_folder, adjusted_folder]:
os.makedirs(folder, exist_ok=True)
clear_folder(folder)
logger.debug(f"Cleared folder: {folder}")
# Clear folders
clear_folder(image_folder)
clear_folder(video_folder)
clear_folder(final_folder)
clear_folder(adjusted_folder)
print("Image and video folders have been cleared.")
try:
image = Image.open(image_input_path)
print("Image opened successfully.")
except Exception as e:
logger.error(f"Failed to open image {image_input_path}: {e}")
return
if image.format != 'PNG':
print("Converting image to PNG format.")
image_input_path = os.path.splitext(image_input_path)[0] + '.png'
image.save(image_input_path)
# Open and potentially resize image if not already compatible
required_sizes = [(1024, 576), (576, 1024), (768, 768)]
if image.size not in required_sizes:
# Using Image.Resampling.LANCZOS for high-quality downsampling
print(f"Resizing image from {image.size} to 768x768")
image = image.resize((768, 768), Image.Resampling.LANCZOS)
image.save(image_input_path) # Save the resized image back to disk
print("Generating frames and similarity scores...")
# Generate frames and similarity scores
num_seconds = 3
frames, similarity_scores = generate_video_frames(image_input_path, num_seconds, image_embedding_model, image_embedding_processor, text_similarity_model)
# Get the list of image files in the image folder
image_files = sorted([f for f in os.listdir(image_folder) if f.endswith(".jpg")])
print(f"Found {len(image_files)} image files in {image_folder}")
# Create temporary videos from each image
temp_video_files = []
for image_file in image_files:
image_path = os.path.join(image_folder, image_file)
temp_video_path = os.path.join(video_folder, f'temp_video_{image_file[:-4]}.mp4')
# Log the paths being used for video creation
logger.debug(f"Processing image file {image_path} for video creation.")
print(f"Creating video from image {image_path} to {temp_video_path}")
# Check if the source image file exists before attempting to create video
if not os.path.exists(image_path):
logger.error(f"Source image file not found: {image_path}")
print(f"Error: Source image file not found: {image_path}")
continue # Skip to the next file
try:
# Assuming create_video_from_image is a function you've defined elsewhere
create_video_from_image(image_path, temp_video_path, duration=2)
temp_video_files.append(temp_video_path)
logger.info(f"Video created and stored at {temp_video_path}")
print(f"Video successfully created at {temp_video_path}")
except Exception as e:
#logger.error(f"Failed to create video from {image_path}: {e}")
print(f"Failed to create video from {image_path}: {e}")
final_folder = "G:\\My Drive\\Capstone\\Agents\\final\\"
clear_folder(final_folder)
# Stitch the temporary videos into a final video
final_video_path = os.path.join(final_folder, "final_video_1.mp4")
print(f"Stitching {len(temp_video_files)} temporary videos into final video at {final_video_path}")
first_stitch_videos(temp_video_files, final_video_path)
# Generating video diffusion using Stability AI API
print("Generating video diffusion using Stability AI API...")
response = requests.post(
f"https://api.stability.ai/v2beta/image-to-video",
headers={
"authorization": f"sk-SYgwArfvXHKn9TxbsGBMtkRNpiEmjdBAT2fc7F9Ri1b07dTa"
},
files={
"image": open(image_input_path, "rb")
},
data={
"seed": 5,
"cfg_scale": 1.8,
"motion_bucket_id": 127
},
)
if response.status_code != 200:
raise Exception("Failed to initiate video generation, response: " + response.text)
response_data = response.json()
generation_id = response_data.get('id')
print('this is generation_id', generation_id)
if not generation_id:
raise Exception("No generation ID received, full response: " + str(response_data))
# Polling the generation process
while True:
response = requests.request(
"GET",
f"https://api.stability.ai/v2beta/image-to-video/result/{generation_id}",
headers={'accept': "video/*", 'authorization': STABILITY_API_KEY}
)
if response.status_code == 202:
print("Generation in-progress, trying again in 10 seconds...")
time.sleep(10)
elif response.status_code == 200:
print("Generation complete!")
with open(f"{final_folder}/final_video_2.mp4", 'wb') as file:
file.write(response.content)
break
else:
raise Exception(str(response.json()))
# Define paths to original and adjusted video files
original_video_files = [f"{final_folder}/final_video_1.mp4", f"{final_folder}/final_video_2.mp4"]
adjusted_video_files = [f"{adjusted_folder}/adjusted_final_video_1.mp4", f"{adjusted_folder}/adjusted_final_video_2.mp4"]
# Adjust properties and stitch videos
for original, adjusted in zip(original_video_files, adjusted_video_files):
adjust_video_properties(original, adjusted, target_fps=24, target_resolution=(768, 768))
final_output_path = f"{final_folder}/final_video_3.mp4"
second_stitch_videos(adjusted_video_files, final_output_path, frame_rate=24, resolution=(768, 768))
print("Final output video saved:", final_output_path)
return final_output_path
nest_asyncio.apply()
import logging
# Set up logging
logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO)
logger = logging.getLogger(__name__)
async def send_video_to_user(update: Update, context: CallbackContext, video_path):
logger.info(f"Checking if video exists at path: {video_path}")
if not os.path.exists(video_path):
logger.error(f"Video file does not exist: {video_path}")
await update.message.reply_text("Failed to find the video file.")
return
chat_id = update.message.chat_id
try:
with open(video_path, 'rb') as video:
message = await context.bot.send_video(chat_id, video)
logger.info(f"Video sent with message_id: {message.message_id}")
except Exception as e:
logger.error(f"Failed to send video: {str(e)}")
await update.message.reply_text("Failed to send video.")
async def start_command(update: Update, context: CallbackContext) -> None:
await update.message.reply_text('Welcome to the video recommendation chatbot! Send an image and a textual requirement to get a video recommendation.')
async def handle_message(update: Update, context: CallbackContext) -> None:
print(update.message.text)
welcome_message = '''
Welcome to the video recommendation chatbot! Please send your product image
Also, please provide the following information:
1. Target Audience:
2. Video Purpose:
3. Video Style:
4. Desired Tone:
5. Key Message:
6. Unique Selling Proposition:
7. Call-to-Action:
8. Additional Requirements:
'''
if not context.user_data.get('welcome_message_sent'):
await update.message.reply_text(welcome_message)
context.user_data['welcome_message_sent'] = True
else:
if update.message.photo:
# file_id = update.message.photo[-1].file_id
# file = await context.bot.get_file(file_id)
# file_bytes = await file.download_as_bytearray()
# image = Image.open(BytesIO(file_bytes))
# print(update.message.caption)
file_id = update.message.photo[-1].file_id
file = await context.bot.get_file(file_id)
file_bytes = await file.download_as_bytearray()
# Debug: Print the size of the downloaded bytes to verify data completeness
print(f"Downloaded image size: {len(file_bytes)} bytes")
try:
# Attempt to open the image
image = Image.open(BytesIO(file_bytes))
# image.show() # Optionally display the image if running in an environment that supports it
except PIL.UnidentifiedImageError:
print("Failed to identify image file. It may be corrupted or in an unsupported format.")
except Exception as e:
print(f"An unexpected error occurred: {e}")
else:
# If there's a caption, print it
if update.message.caption:
print("Caption:", update.message.caption)
# Display the received image
print("Received image:")
display(image)
image.save("received_image.jpg")
query_text = update.message.caption or ""
# Print the received text input
print("Received text input:")
print(query_text)
# Send "Analyzing..." message
await update.message.reply_text("Analyzing...")
# Extract product description from the image
product_description = extract_product_from_image(image)
print("Extracted product description:")
print(product_description)
# Find the closest category based on the product description
closest_category = find_closest_category(product_description, videos_df)
print("Closest category:", closest_category)
if closest_category is None:
await update.message.reply_text("Unable to determine the closest category for the given product description.")
return
# Extract the category name from the closest_category variable
category_name = closest_category.strip("'")
print("Extracted category name:", category_name)
# Debug: Print the unique categories in the videos_df DataFrame
print("Unique categories in videos_df:")
print(videos_df['category'].unique())
# Debug: Print the number of videos in the closest category
category_videos_df = videos_df[videos_df['category'] == category_name]
print("Number of videos in the closest category:", len(category_videos_df))
# Retry finding the closest category if the number of videos is 0
max_retries = 3
retry_count = 0
while len(category_videos_df) == 0 and retry_count < max_retries: