forked from yusukeurakami/dreamer-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
689 lines (659 loc) · 31.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import argparse
import os
import numpy as np
import torch
from tensorboardX import SummaryWriter
from torch import nn, optim
from torch.distributions import Normal
from torch.distributions.kl import kl_divergence
from torch.nn import functional as F
from torchvision.utils import make_grid, save_image
from tqdm import tqdm
from env import CONTROL_SUITE_ENVS, GYM_ENVS, Env, EnvBatcher
from memory import ExperienceReplay
from models import ActorModel, Encoder, ObservationModel, RewardModel, TransitionModel, ValueModel, bottle
from planner import MPCPlanner
from utils import FreezeParameters, imagine_ahead, lambda_return, lineplot, write_video
# Hyperparameters
parser = argparse.ArgumentParser(description='PlaNet or Dreamer')
parser.add_argument('--algo', type=str, default='dreamer', help='planet or dreamer')
parser.add_argument('--id', type=str, default='default', help='Experiment ID')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='Random seed')
parser.add_argument('--disable-cuda', action='store_true', help='Disable CUDA')
parser.add_argument(
'--env',
type=str,
default='Pendulum-v0',
choices=GYM_ENVS + CONTROL_SUITE_ENVS,
help='Gym/Control Suite environment',
)
parser.add_argument('--symbolic-env', action='store_true', help='Symbolic features')
parser.add_argument('--max-episode-length', type=int, default=1000, metavar='T', help='Max episode length')
parser.add_argument(
'--experience-size', type=int, default=1000000, metavar='D', help='Experience replay size'
) # Original implementation has an unlimited buffer size, but 1 million is the max experience collected anyway
parser.add_argument(
'--cnn-activation-function',
type=str,
default='relu',
choices=dir(F),
help='Model activation function for a convolution layer',
)
parser.add_argument(
'--dense-activation-function',
type=str,
default='elu',
choices=dir(F),
help='Model activation function a dense layer',
)
parser.add_argument(
'--embedding-size', type=int, default=1024, metavar='E', help='Observation embedding size'
) # Note that the default encoder for visual observations outputs a 1024D vector; for other embedding sizes an additional fully-connected layer is used
parser.add_argument('--hidden-size', type=int, default=200, metavar='H', help='Hidden size')
parser.add_argument('--belief-size', type=int, default=200, metavar='H', help='Belief/hidden size')
parser.add_argument('--state-size', type=int, default=30, metavar='Z', help='State/latent size')
parser.add_argument('--action-repeat', type=int, default=2, metavar='R', help='Action repeat')
parser.add_argument('--action-noise', type=float, default=0.3, metavar='ε', help='Action noise')
parser.add_argument('--episodes', type=int, default=1000, metavar='E', help='Total number of episodes')
parser.add_argument('--seed-episodes', type=int, default=5, metavar='S', help='Seed episodes')
parser.add_argument('--collect-interval', type=int, default=100, metavar='C', help='Collect interval')
parser.add_argument('--batch-size', type=int, default=50, metavar='B', help='Batch size')
parser.add_argument('--chunk-size', type=int, default=50, metavar='L', help='Chunk size')
parser.add_argument(
'--worldmodel-LogProbLoss',
action='store_true',
help='use LogProb loss for observation_model and reward_model training',
)
parser.add_argument(
'--overshooting-distance',
type=int,
default=50,
metavar='D',
help='Latent overshooting distance/latent overshooting weight for t = 1',
)
parser.add_argument(
'--overshooting-kl-beta',
type=float,
default=0,
metavar='β>1',
help='Latent overshooting KL weight for t > 1 (0 to disable)',
)
parser.add_argument(
'--overshooting-reward-scale',
type=float,
default=0,
metavar='R>1',
help='Latent overshooting reward prediction weight for t > 1 (0 to disable)',
)
parser.add_argument('--global-kl-beta', type=float, default=0, metavar='βg', help='Global KL weight (0 to disable)')
parser.add_argument('--free-nats', type=float, default=3, metavar='F', help='Free nats')
parser.add_argument('--bit-depth', type=int, default=5, metavar='B', help='Image bit depth (quantisation)')
parser.add_argument('--model_learning-rate', type=float, default=6e-4, metavar='α', help='Learning rate')
parser.add_argument('--actor_learning-rate', type=float, default=8e-5, metavar='α', help='Learning rate')
parser.add_argument('--value_learning-rate', type=float, default=8e-5, metavar='α', help='Learning rate')
parser.add_argument(
'--learning-rate-schedule',
type=int,
default=0,
metavar='αS',
help='Linear learning rate schedule (optimisation steps from 0 to final learning rate; 0 to disable)',
)
parser.add_argument('--adam-epsilon', type=float, default=1e-7, metavar='ε', help='Adam optimizer epsilon value')
# Note that original has a linear learning rate decay, but it seems unlikely that this makes a significant difference
parser.add_argument('--grad-clip-norm', type=float, default=100.0, metavar='C', help='Gradient clipping norm')
parser.add_argument('--planning-horizon', type=int, default=15, metavar='H', help='Planning horizon distance')
parser.add_argument('--discount', type=float, default=0.99, metavar='H', help='Planning horizon distance')
parser.add_argument('--disclam', type=float, default=0.95, metavar='H', help='discount rate to compute return')
parser.add_argument('--optimisation-iters', type=int, default=10, metavar='I', help='Planning optimisation iterations')
parser.add_argument('--candidates', type=int, default=1000, metavar='J', help='Candidate samples per iteration')
parser.add_argument('--top-candidates', type=int, default=100, metavar='K', help='Number of top candidates to fit')
parser.add_argument('--test', action='store_true', help='Test only')
parser.add_argument('--test-interval', type=int, default=25, metavar='I', help='Test interval (episodes)')
parser.add_argument('--test-episodes', type=int, default=10, metavar='E', help='Number of test episodes')
parser.add_argument('--checkpoint-interval', type=int, default=50, metavar='I', help='Checkpoint interval (episodes)')
parser.add_argument('--checkpoint-experience', action='store_true', help='Checkpoint experience replay')
parser.add_argument('--models', type=str, default='', metavar='M', help='Load model checkpoint')
parser.add_argument('--experience-replay', type=str, default='', metavar='ER', help='Load experience replay')
parser.add_argument('--render', action='store_true', help='Render environment')
args = parser.parse_args()
args.overshooting_distance = min(
args.chunk_size, args.overshooting_distance
) # Overshooting distance cannot be greater than chunk size
print(' ' * 26 + 'Options')
for k, v in vars(args).items():
print(' ' * 26 + k + ': ' + str(v))
# Setup
results_dir = os.path.join('results', '{}_{}'.format(args.env, args.id))
os.makedirs(results_dir, exist_ok=True)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available() and not args.disable_cuda:
print("using CUDA")
args.device = torch.device('cuda')
torch.cuda.manual_seed(args.seed)
else:
print("using CPU")
args.device = torch.device('cpu')
metrics = {
'steps': [],
'episodes': [],
'train_rewards': [],
'test_episodes': [],
'test_rewards': [],
'observation_loss': [],
'reward_loss': [],
'kl_loss': [],
'actor_loss': [],
'value_loss': [],
}
summary_name = results_dir + "/{}_{}_log"
writer = SummaryWriter(summary_name.format(args.env, args.id))
print("writer is ready")
# Initialise training environment and experience replay memory
env = Env(args.env, args.symbolic_env, args.seed, args.max_episode_length, args.action_repeat, args.bit_depth)
print("environment is loaded")
if args.experience_replay != '' and os.path.exists(args.experience_replay):
D = torch.load(args.experience_replay)
metrics['steps'], metrics['episodes'] = [D.steps] * D.episodes, list(range(1, D.episodes + 1))
elif not args.test:
D = ExperienceReplay(
args.experience_size, args.symbolic_env, env.observation_size, env.action_size, args.bit_depth, args.device
)
# Initialise dataset D with S random seed episodes
for s in range(1, args.seed_episodes + 1):
observation, done, t = env.reset(), False, 0
while not done:
action = env.sample_random_action()
next_observation, reward, done = env.step(action)
D.append(observation, action, reward, done)
observation = next_observation
t += 1
metrics['steps'].append(t * args.action_repeat + (0 if len(metrics['steps']) == 0 else metrics['steps'][-1]))
metrics['episodes'].append(s)
print("experience replay buffer is ready")
# Initialise model parameters randomly
transition_model = TransitionModel(
args.belief_size,
args.state_size,
env.action_size,
args.hidden_size,
args.embedding_size,
args.dense_activation_function,
).to(device=args.device)
observation_model = ObservationModel(
args.symbolic_env,
env.observation_size,
args.belief_size,
args.state_size,
args.embedding_size,
args.cnn_activation_function,
).to(device=args.device)
reward_model = RewardModel(args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(
device=args.device
)
encoder = Encoder(args.symbolic_env, env.observation_size, args.embedding_size, args.cnn_activation_function).to(
device=args.device
)
actor_model = ActorModel(
args.belief_size, args.state_size, args.hidden_size, env.action_size, args.dense_activation_function
).to(device=args.device)
value_model = ValueModel(args.belief_size, args.state_size, args.hidden_size, args.dense_activation_function).to(
device=args.device
)
param_list = (
list(transition_model.parameters())
+ list(observation_model.parameters())
+ list(reward_model.parameters())
+ list(encoder.parameters())
)
value_actor_param_list = list(value_model.parameters()) + list(actor_model.parameters())
params_list = param_list + value_actor_param_list
print("transition, observation, reward, encoder, actor, value models are ready")
model_optimizer = optim.Adam(
param_list, lr=0 if args.learning_rate_schedule != 0 else args.model_learning_rate, eps=args.adam_epsilon
)
actor_optimizer = optim.Adam(
actor_model.parameters(),
lr=0 if args.learning_rate_schedule != 0 else args.actor_learning_rate,
eps=args.adam_epsilon,
)
value_optimizer = optim.Adam(
value_model.parameters(),
lr=0 if args.learning_rate_schedule != 0 else args.value_learning_rate,
eps=args.adam_epsilon,
)
if args.models != '' and os.path.exists(args.models):
print("loading pre-trained models")
model_dicts = torch.load(args.models)
transition_model.load_state_dict(model_dicts['transition_model'])
observation_model.load_state_dict(model_dicts['observation_model'])
reward_model.load_state_dict(model_dicts['reward_model'])
encoder.load_state_dict(model_dicts['encoder'])
actor_model.load_state_dict(model_dicts['actor_model'])
value_model.load_state_dict(model_dicts['value_model'])
model_optimizer.load_state_dict(model_dicts['model_optimizer'])
if args.algo == "dreamer":
print("DREAMER")
planner = actor_model
else:
print("PLANET")
planner = MPCPlanner(
env.action_size,
args.planning_horizon,
args.optimisation_iters,
args.candidates,
args.top_candidates,
transition_model,
reward_model,
)
global_prior = Normal(
torch.zeros(args.batch_size, args.state_size, device=args.device),
torch.ones(args.batch_size, args.state_size, device=args.device),
) # Global prior N(0, I)
free_nats = torch.full((1,), args.free_nats, device=args.device) # Allowed deviation in KL divergence
print("models and planners are ready")
def update_belief_and_act(
args, env, planner, transition_model, encoder, belief, posterior_state, action, observation, explore=False
):
# Infer belief over current state q(s_t|o≤t,a<t) from the history
# print("action size: ",action.size()) torch.Size([1, 6])
belief, _, _, _, posterior_state, _, _ = transition_model(
posterior_state, action.unsqueeze(dim=0), belief, encoder(observation).unsqueeze(dim=0)
) # Action and observation need extra time dimension
belief, posterior_state = belief.squeeze(dim=0), posterior_state.squeeze(
dim=0
) # Remove time dimension from belief/state
if args.algo == "dreamer":
action = planner.get_action(belief, posterior_state, det=not (explore))
else:
action = planner(belief, posterior_state) # Get action from planner(q(s_t|o≤t,a<t), p)
if explore:
action = torch.clamp(
Normal(action, args.action_noise).rsample(), -1, 1
) # Add gaussian exploration noise on top of the sampled action
# action = action + args.action_noise * torch.randn_like(action) # Add exploration noise ε ~ p(ε) to the action
next_observation, reward, done = env.step(
action.cpu() if isinstance(env, EnvBatcher) else action[0].cpu()
) # Perform environment step (action repeats handled internally)
return belief, posterior_state, action, next_observation, reward, done
# Testing only
if args.test:
# Set models to eval mode
transition_model.eval()
reward_model.eval()
encoder.eval()
with torch.no_grad():
total_reward = 0
for _ in tqdm(range(args.test_episodes)):
observation = env.reset()
belief, posterior_state, action = (
torch.zeros(1, args.belief_size, device=args.device),
torch.zeros(1, args.state_size, device=args.device),
torch.zeros(1, env.action_size, device=args.device),
)
pbar = tqdm(range(args.max_episode_length // args.action_repeat))
for t in pbar:
belief, posterior_state, action, observation, reward, done = update_belief_and_act(
args,
env,
planner,
transition_model,
encoder,
belief,
posterior_state,
action,
observation.to(device=args.device),
)
total_reward += reward
if args.render:
env.render()
if done:
pbar.close()
break
print('Average Reward:', total_reward / args.test_episodes)
env.close()
quit()
# Training (and testing)
for episode in tqdm(
range(metrics['episodes'][-1] + 1, args.episodes + 1), total=args.episodes, initial=metrics['episodes'][-1] + 1
):
# Model fitting
losses = []
model_modules = transition_model.modules + encoder.modules + observation_model.modules + reward_model.modules
print("training loop")
for s in tqdm(range(args.collect_interval)):
# Draw sequence chunks {(o_t, a_t, r_t+1, terminal_t+1)} ~ D uniformly at random from the dataset (including terminal flags)
observations, actions, rewards, nonterminals = D.sample(
args.batch_size, args.chunk_size
) # Transitions start at time t = 0
# Create initial belief and state for time t = 0
init_belief, init_state = torch.zeros(args.batch_size, args.belief_size, device=args.device), torch.zeros(
args.batch_size, args.state_size, device=args.device
)
# Update belief/state using posterior from previous belief/state, previous action and current observation (over entire sequence at once)
(
beliefs,
prior_states,
prior_means,
prior_std_devs,
posterior_states,
posterior_means,
posterior_std_devs,
) = transition_model(
init_state, actions[:-1], init_belief, bottle(encoder, (observations[1:],)), nonterminals[:-1]
)
# Calculate observation likelihood, reward likelihood and KL losses (for t = 0 only for latent overshooting); sum over final dims, average over batch and time (original implementation, though paper seems to miss 1/T scaling?)
if args.worldmodel_LogProbLoss:
observation_dist = Normal(bottle(observation_model, (beliefs, posterior_states)), 1)
observation_loss = (
-observation_dist.log_prob(observations[1:])
.sum(dim=2 if args.symbolic_env else (2, 3, 4))
.mean(dim=(0, 1))
)
else:
observation_loss = (
F.mse_loss(bottle(observation_model, (beliefs, posterior_states)), observations[1:], reduction='none')
.sum(dim=2 if args.symbolic_env else (2, 3, 4))
.mean(dim=(0, 1))
)
if args.worldmodel_LogProbLoss:
reward_dist = Normal(bottle(reward_model, (beliefs, posterior_states)), 1)
reward_loss = -reward_dist.log_prob(rewards[1:]).mean(dim=(0, 1))
else:
reward_loss = F.mse_loss(
bottle(reward_model, (beliefs, posterior_states)), rewards[1:], reduction='none'
).mean(dim=(0, 1))
# transition loss
div = kl_divergence(Normal(posterior_means, posterior_std_devs), Normal(prior_means, prior_std_devs)).sum(dim=2)
kl_loss = torch.max(div, free_nats).mean(
dim=(0, 1)
) # Note that normalisation by overshooting distance and weighting by overshooting distance cancel out
if args.global_kl_beta != 0:
kl_loss += args.global_kl_beta * kl_divergence(
Normal(posterior_means, posterior_std_devs), global_prior
).sum(dim=2).mean(dim=(0, 1))
# Calculate latent overshooting objective for t > 0
if args.overshooting_kl_beta != 0:
overshooting_vars = [] # Collect variables for overshooting to process in batch
for t in range(1, args.chunk_size - 1):
d = min(t + args.overshooting_distance, args.chunk_size - 1) # Overshooting distance
t_, d_ = t - 1, d - 1 # Use t_ and d_ to deal with different time indexing for latent states
seq_pad = (
0,
0,
0,
0,
0,
t - d + args.overshooting_distance,
) # Calculate sequence padding so overshooting terms can be calculated in one batch
# Store (0) actions, (1) nonterminals, (2) rewards, (3) beliefs, (4) prior states, (5) posterior means, (6) posterior standard deviations and (7) sequence masks
overshooting_vars.append(
(
F.pad(actions[t:d], seq_pad),
F.pad(nonterminals[t:d], seq_pad),
F.pad(rewards[t:d], seq_pad[2:]),
beliefs[t_],
prior_states[t_],
F.pad(posterior_means[t_ + 1 : d_ + 1].detach(), seq_pad),
F.pad(posterior_std_devs[t_ + 1 : d_ + 1].detach(), seq_pad, value=1),
F.pad(torch.ones(d - t, args.batch_size, args.state_size, device=args.device), seq_pad),
)
) # Posterior standard deviations must be padded with > 0 to prevent infinite KL divergences
overshooting_vars = tuple(zip(*overshooting_vars))
# Update belief/state using prior from previous belief/state and previous action (over entire sequence at once)
beliefs, prior_states, prior_means, prior_std_devs = transition_model(
torch.cat(overshooting_vars[4], dim=0),
torch.cat(overshooting_vars[0], dim=1),
torch.cat(overshooting_vars[3], dim=0),
None,
torch.cat(overshooting_vars[1], dim=1),
)
seq_mask = torch.cat(overshooting_vars[7], dim=1)
# Calculate overshooting KL loss with sequence mask
kl_loss += (
(1 / args.overshooting_distance)
* args.overshooting_kl_beta
* torch.max(
(
kl_divergence(
Normal(torch.cat(overshooting_vars[5], dim=1), torch.cat(overshooting_vars[6], dim=1)),
Normal(prior_means, prior_std_devs),
)
* seq_mask
).sum(dim=2),
free_nats,
).mean(dim=(0, 1))
* (args.chunk_size - 1)
) # Update KL loss (compensating for extra average over each overshooting/open loop sequence)
# Calculate overshooting reward prediction loss with sequence mask
if args.overshooting_reward_scale != 0:
reward_loss += (
(1 / args.overshooting_distance)
* args.overshooting_reward_scale
* F.mse_loss(
bottle(reward_model, (beliefs, prior_states)) * seq_mask[:, :, 0],
torch.cat(overshooting_vars[2], dim=1),
reduction='none',
).mean(dim=(0, 1))
* (args.chunk_size - 1)
) # Update reward loss (compensating for extra average over each overshooting/open loop sequence)
# Apply linearly ramping learning rate schedule
if args.learning_rate_schedule != 0:
for group in model_optimizer.param_groups:
group['lr'] = min(
group['lr'] + args.model_learning_rate / args.model_learning_rate_schedule, args.model_learning_rate
)
model_loss = observation_loss + reward_loss + kl_loss
# Update model parameters
model_optimizer.zero_grad()
model_loss.backward()
nn.utils.clip_grad_norm_(param_list, args.grad_clip_norm, norm_type=2)
model_optimizer.step()
# Dreamer implementation: actor loss calculation and optimization
with torch.no_grad():
actor_states = posterior_states.detach()
actor_beliefs = beliefs.detach()
with FreezeParameters(model_modules):
imagination_traj = imagine_ahead(
actor_states, actor_beliefs, actor_model, transition_model, args.planning_horizon
)
imged_beliefs, imged_prior_states, imged_prior_means, imged_prior_std_devs = imagination_traj
with FreezeParameters(model_modules + value_model.modules):
imged_reward = bottle(reward_model, (imged_beliefs, imged_prior_states))
value_pred = bottle(value_model, (imged_beliefs, imged_prior_states))
returns = lambda_return(
imged_reward[:-1], value_pred[:-1], bootstrap=value_pred[-1], discount=args.discount, lambda_=args.disclam
)
actor_loss = -torch.mean(returns)
# Update model parameters
actor_optimizer.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(actor_model.parameters(), args.grad_clip_norm, norm_type=2)
actor_optimizer.step()
# Dreamer implementation: value loss calculation and optimization
with torch.no_grad():
value_beliefs = imged_beliefs.detach()
value_prior_states = imged_prior_states.detach()
target_return = returns.detach()
value_dist = Normal(
bottle(value_model, (value_beliefs, value_prior_states))[:-1], 1
) # detach the input tensor from the transition network.
value_loss = -value_dist.log_prob(target_return).mean(dim=(0, 1))
# Update model parameters
value_optimizer.zero_grad()
value_loss.backward()
nn.utils.clip_grad_norm_(value_model.parameters(), args.grad_clip_norm, norm_type=2)
value_optimizer.step()
# # Store (0) observation loss (1) reward loss (2) KL loss (3) actor loss (4) value loss
losses.append(
[observation_loss.item(), reward_loss.item(), kl_loss.item(), actor_loss.item(), value_loss.item()]
)
# Update and plot loss metrics
losses = tuple(zip(*losses))
metrics['observation_loss'].append(losses[0])
metrics['reward_loss'].append(losses[1])
metrics['kl_loss'].append(losses[2])
metrics['actor_loss'].append(losses[3])
metrics['value_loss'].append(losses[4])
lineplot(
metrics['episodes'][-len(metrics['observation_loss']) :],
metrics['observation_loss'],
'observation_loss',
results_dir,
)
lineplot(metrics['episodes'][-len(metrics['reward_loss']) :], metrics['reward_loss'], 'reward_loss', results_dir)
lineplot(metrics['episodes'][-len(metrics['kl_loss']) :], metrics['kl_loss'], 'kl_loss', results_dir)
lineplot(metrics['episodes'][-len(metrics['actor_loss']) :], metrics['actor_loss'], 'actor_loss', results_dir)
lineplot(metrics['episodes'][-len(metrics['value_loss']) :], metrics['value_loss'], 'value_loss', results_dir)
# Data collection
print("Data collection")
with torch.no_grad():
observation, total_reward = env.reset(), 0
belief, posterior_state, action = (
torch.zeros(1, args.belief_size, device=args.device),
torch.zeros(1, args.state_size, device=args.device),
torch.zeros(1, env.action_size, device=args.device),
)
pbar = tqdm(range(1, args.max_episode_length // args.action_repeat + 1))
for t in pbar:
# print("step",t)
belief, posterior_state, action, next_observation, reward, done = update_belief_and_act(
args,
env,
planner,
transition_model,
encoder,
belief,
posterior_state,
action,
observation.to(device=args.device),
explore=True,
)
D.append(observation, action.cpu(), reward, done)
total_reward += reward
observation = next_observation
if args.render:
env.render()
if done:
pbar.close()
break
# Update and plot train reward metrics
metrics['steps'].append(t * args.action_repeat + metrics['steps'][-1])
metrics['episodes'].append(episode)
metrics['train_rewards'].append(total_reward)
lineplot(
metrics['episodes'][-len(metrics['train_rewards']) :],
metrics['train_rewards'],
'train_rewards',
results_dir,
)
# Test model
print("Test model")
if episode % args.test_interval == 0:
# Set models to eval mode
transition_model.eval()
observation_model.eval()
reward_model.eval()
encoder.eval()
actor_model.eval()
value_model.eval()
# Initialise parallelised test environments
test_envs = EnvBatcher(
Env,
(args.env, args.symbolic_env, args.seed, args.max_episode_length, args.action_repeat, args.bit_depth),
{},
args.test_episodes,
)
with torch.no_grad():
observation, total_rewards, video_frames = test_envs.reset(), np.zeros((args.test_episodes,)), []
belief, posterior_state, action = (
torch.zeros(args.test_episodes, args.belief_size, device=args.device),
torch.zeros(args.test_episodes, args.state_size, device=args.device),
torch.zeros(args.test_episodes, env.action_size, device=args.device),
)
pbar = tqdm(range(args.max_episode_length // args.action_repeat))
for t in pbar:
belief, posterior_state, action, next_observation, reward, done = update_belief_and_act(
args,
test_envs,
planner,
transition_model,
encoder,
belief,
posterior_state,
action,
observation.to(device=args.device),
)
total_rewards += reward.numpy()
if not args.symbolic_env: # Collect real vs. predicted frames for video
video_frames.append(
make_grid(
torch.cat([observation, observation_model(belief, posterior_state).cpu()], dim=3) + 0.5,
nrow=5,
).numpy()
) # Decentre
observation = next_observation
if done.sum().item() == args.test_episodes:
pbar.close()
break
# Update and plot reward metrics (and write video if applicable) and save metrics
metrics['test_episodes'].append(episode)
metrics['test_rewards'].append(total_rewards.tolist())
lineplot(metrics['test_episodes'], metrics['test_rewards'], 'test_rewards', results_dir)
lineplot(
np.asarray(metrics['steps'])[np.asarray(metrics['test_episodes']) - 1],
metrics['test_rewards'],
'test_rewards_steps',
results_dir,
xaxis='step',
)
if not args.symbolic_env:
episode_str = str(episode).zfill(len(str(args.episodes)))
write_video(video_frames, 'test_episode_%s' % episode_str, results_dir) # Lossy compression
save_image(
torch.as_tensor(video_frames[-1]), os.path.join(results_dir, 'test_episode_%s.png' % episode_str)
)
torch.save(metrics, os.path.join(results_dir, 'metrics.pth'))
# Set models to train mode
transition_model.train()
observation_model.train()
reward_model.train()
encoder.train()
actor_model.train()
value_model.train()
# Close test environments
test_envs.close()
writer.add_scalar("train_reward", metrics['train_rewards'][-1], metrics['steps'][-1])
writer.add_scalar("train/episode_reward", metrics['train_rewards'][-1], metrics['steps'][-1] * args.action_repeat)
writer.add_scalar("observation_loss", metrics['observation_loss'][0][-1], metrics['steps'][-1])
writer.add_scalar("reward_loss", metrics['reward_loss'][0][-1], metrics['steps'][-1])
writer.add_scalar("kl_loss", metrics['kl_loss'][0][-1], metrics['steps'][-1])
writer.add_scalar("actor_loss", metrics['actor_loss'][0][-1], metrics['steps'][-1])
writer.add_scalar("value_loss", metrics['value_loss'][0][-1], metrics['steps'][-1])
print(
"episodes: {}, total_steps: {}, train_reward: {} ".format(
metrics['episodes'][-1], metrics['steps'][-1], metrics['train_rewards'][-1]
)
)
# Checkpoint models
if episode % args.checkpoint_interval == 0:
torch.save(
{
'transition_model': transition_model.state_dict(),
'observation_model': observation_model.state_dict(),
'reward_model': reward_model.state_dict(),
'encoder': encoder.state_dict(),
'actor_model': actor_model.state_dict(),
'value_model': value_model.state_dict(),
'model_optimizer': model_optimizer.state_dict(),
'actor_optimizer': actor_optimizer.state_dict(),
'value_optimizer': value_optimizer.state_dict(),
},
os.path.join(results_dir, 'models_%d.pth' % episode),
)
if args.checkpoint_experience:
torch.save(
D, os.path.join(results_dir, 'experience.pth'), pickle_protocol=5
) # Warning: will fail with MemoryError with large memory sizes
# Close training environment
env.close()