forked from jinlab-imvr/Chain-of-Gesture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer2_3_1.py
188 lines (153 loc) · 8 KB
/
transformer2_3_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import numpy as np
import torch.nn as nn
import math
# some code adapted from https://wmathor.com/index.php/archives/1455/
class ScaledDotProductAttention(nn.Module):
def __init__(self, d_k, n_heads):
super(ScaledDotProductAttention, self).__init__()
self.d_k = d_k
self.n_heads = n_heads
def forward(self, Q, K, V):
'''
Q: [batch_size, n_heads, len_q=1, d_k]
K: [batch_size, n_heads, len_k, d_k]
V: [batch_size, n_heads, len_v(=len_k), d_v]
'''
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(
self.d_k) # scores : [batch_size, n_heads, len_q, len_k]
attn = nn.Softmax(dim=-1)(scores) # [batch_size, n_heads, len_q, len_q]
context = torch.matmul(attn, V) # [batch_size, n_heads, len_q, d_v]
return context, attn
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, d_k, d_v, n_heads, len_q, len_k, gpu_id):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=False)
self.W_K = nn.Linear(d_model, d_k * n_heads, bias=False)
self.W_V = nn.Linear(d_model, d_v * n_heads, bias=False)
self.fc = nn.Linear(n_heads * d_v, d_model, bias=False)
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.n_heads = n_heads
self.ScaledDotProductAttention = ScaledDotProductAttention(self.d_k, n_heads)
self.len_q = len_q
self.len_k = len_k
self.gpu_id = gpu_id
def forward(self, input_Q, input_K, input_V):
'''
input_Q: [batch_size, len_q, d_model]
input_K: [batch_size, len_k, d_model]
input_V: [batch_size, len_v(=len_k), d_model]
'''
residual, batch_size = input_Q, input_Q.size(0)
# (B, S, D) -proj-> (B, S, D_new) -split-> (B, S, H, W) -trans-> (B, H, S, W)
Q = self.W_Q(input_Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2) # Q: [batch_size, n_heads, len_q, d_k]
K = self.W_K(input_K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2) # K: [batch_size, n_heads, len_k, d_k]
V = self.W_V(input_V).view(batch_size, -1, self.n_heads, self.d_v).transpose(1, 2) # V: [batch_size, n_heads, len_v(=len_k), d_v]
# context: [batch_size, n_heads, len_q, d_v], attn: [batch_size, n_heads, len_q, len_k]
context, attn = self.ScaledDotProductAttention(Q, K, V)
context = context.transpose(1, 2).reshape(batch_size, -1,
self.n_heads * self.d_v) # context: [batch_size, len_q, n_heads * d_v]
output = self.fc(context) # [batch_size, len_q, d_model]
return nn.LayerNorm(self.d_model).to(self.gpu_id)(output + residual), attn
class PoswiseFeedForwardNet(nn.Module):
def __init__(self, d_model, d_ff, gpu_id):
super(PoswiseFeedForwardNet, self).__init__()
self.fc = nn.Sequential(
nn.Linear(d_model, d_ff, bias=False),
nn.ReLU(),
nn.Linear(d_ff, d_model, bias=False)
)
self.d_model = d_model
self.gpu_id = gpu_id
def forward(self, inputs):
'''
inputs: [batch_size, seq_len, d_model]
'''
residual = inputs
output = self.fc(inputs)
return nn.LayerNorm(self.d_model).to(self.gpu_id)(output + residual) # [batch_size, seq_len, d_model]
class EncoderLayer(nn.Module):
def __init__(self, d_model, d_ff, d_k, d_v, n_heads, len_q, gpu_id):
super(EncoderLayer, self).__init__()
self.enc_self_attn = MultiHeadAttention(d_model, d_k, d_v, n_heads, 1, len_q, gpu_id)
self.pos_ffn = PoswiseFeedForwardNet(d_model, d_ff, gpu_id)
def forward(self, enc_inputs):
'''
enc_inputs: [batch_size, src_len, d_model]
'''
# enc_outputs: [batch_size, src_len, d_model], attn: [batch_size, n_heads, src_len, src_len]
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs) # enc_inputs to same Q,K,V
enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, src_len, d_model]
return enc_outputs, attn
class Encoder(nn.Module):
def __init__(self, d_model, d_ff, d_k, d_v, n_layers, n_heads, len_q, gpu_id):
super(Encoder, self).__init__()
self.layers = nn.ModuleList([EncoderLayer(d_model, d_ff, d_k, d_v, n_heads, len_q, gpu_id) for _ in range(n_layers)])
def forward(self, enc_inputs):
'''
enc_inputs: [batch_size, src_len, d_model]
'''
enc_outputs = enc_inputs
enc_self_attns = []
for layer in self.layers:
# enc_outputs: [batch_size, src_len, d_model], enc_self_attn: [batch_size, n_heads, src_len, src_len]
enc_outputs, enc_self_attn = layer(enc_outputs)
enc_self_attns.append(enc_self_attn)
return enc_outputs, enc_self_attns
class DecoderLayer(nn.Module):
def __init__(self, d_model, d_ff, d_k, d_v, n_heads, len_q, gpu_id):
super(DecoderLayer, self).__init__()
self.dec_enc_attn = MultiHeadAttention(d_model, d_k, d_v, n_heads, 1, len_q, gpu_id)
self.pos_ffn = PoswiseFeedForwardNet(d_model, d_ff, gpu_id)
def forward(self, dec_inputs, enc_outputs):
'''
dec_inputs: [batch_size, tgt_len, d_model]
enc_outputs: [batch_size, src_len, d_model]
dec_self_attn_mask: [batch_size, tgt_len, tgt_len]
dec_enc_attn_mask: [batch_size, tgt_len, src_len]
'''
# dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len]
# dec_outputs: [batch_size, tgt_len, d_model], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_inputs, enc_outputs, enc_outputs)
dec_outputs = self.pos_ffn(dec_outputs) # [batch_size, tgt_len, d_model]
return dec_outputs, dec_enc_attn
class Decoder(nn.Module):
def __init__(self, d_model, d_ff, d_k, d_v, n_layers, n_heads, len_q, gpu_id):
super(Decoder, self).__init__()
self.layers = nn.ModuleList([DecoderLayer(d_model, d_ff, d_k, d_v, n_heads, len_q, gpu_id) for _ in range(n_layers)])
def forward(self, dec_inputs, enc_outputs):
'''
dec_inputs: [batch_size, tgt_len, d_model]
enc_intpus: [batch_size, src_len, d_model]
enc_outputs: [batsh_size, src_len, d_model]
'''
dec_outputs = dec_inputs # self.tgt_emb(dec_inputs) # [batch_size, tgt_len, d_model]
# dec_self_attn_subsequence_mask = get_attn_subsequence_mask(dec_inputs).to(gpu_id) # [batch_size, tgt_len, tgt_len]
dec_enc_attns = []
for layer in self.layers:
# dec_outputs: [batch_size, tgt_len, d_model], dec_self_attn: [batch_size, n_heads, tgt_len, tgt_len], dec_enc_attn: [batch_size, h_heads, tgt_len, src_len]
dec_outputs, dec_enc_attn = layer(dec_outputs, enc_outputs)
dec_enc_attns.append(dec_enc_attn)
return dec_outputs
# d_model, Embedding Size
# d_ff, FeedForward dimension
# d_k = d_v, dimension of K(=Q), V
# n_layers, number of Encoder of Decoder Layer
# n_heads, number of heads in Multi-Head Attention
class Transformer2_3_1(nn.Module):
def __init__(self, d_model, d_ff, d_k, d_v, n_layers, n_heads, len_q, gpu_id):
super(Transformer2_3_1, self).__init__()
self.encoder = Encoder(d_model, d_ff, d_k, d_v, n_layers, n_heads, len_q, gpu_id).to(gpu_id)
self.decoder = Decoder(d_model, d_ff, d_k, d_v, 1, n_heads, len_q, gpu_id).to(gpu_id)
def forward(self, enc_inputs, dec_inputs):
'''
enc_inputs: [batch_size, src_len, d_model]
'''
# tensor to store decoder outputs
# outputs = torch.zeros(batch_size, tgt_len, tgt_vocab_size).to(gpu_id)
# enc_outputs: [batch_size, src_len, d_model], enc_self_attns: [n_layers, batch_size, n_heads, src_len, src_len]
enc_outputs, enc_self_attns = self.encoder(enc_inputs)
dec_outputs = self.decoder(dec_inputs, enc_outputs)
return dec_outputs