-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRSA_KEYGEN_Engine.v
742 lines (644 loc) · 18.6 KB
/
RSA_KEYGEN_Engine.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
//RSA_Decryption_engine
//extended euclidean algorithm
`timescale 1ns / 1ps
//Inverse
module RSA_KEYGEN_Engine
#(
parameter WIDTH = 512
)(
input aclk, // Clock
input aresetn, // Asynchronous reset active low
input next,
output wire [WIDTH-1:0] p,
output wire [WIDTH-1:0] q,
output wire [WIDTH-1:0] r,
output wire [WIDTH-1:0] s,
output wire pqrs_ready,
output reg [WIDTH-1:0] d_p,
output reg [WIDTH-1:0] d_q,
output reg [WIDTH-1:0] d_r,
output reg [WIDTH-1:0] d_s,
output reg [WIDTH-1:0] c_p,
output reg [WIDTH-1:0] c_q,
output reg [WIDTH-1:0] c_r,
output reg [WIDTH-1:0] c_s,
output reg done
);
//----------------------------------------------------------------
// Parameters.
//----------------------------------------------------------------
localparam STATE_IDLE = 4'd0;
localparam STATE_INIT_INIT = 4'd1;
localparam STATE_INIT_DONE = 4'd2;
localparam STATE_INIT_ROUND = 4'd3;
localparam STATE_INIT_NEXT = 4'd4;
localparam STATE_INIT_RUN = 4'd5;
localparam STATE_INIT_ROUND_DONE = 4'd6;
localparam STATE_ROUN_INIT = 3'd0;
localparam STATE_ROUN_RUN = 3'd1;
localparam STATE_ROUND_NEXT = 3'd2;
localparam STATE_ROUND_DONE = 3'd3;
//---------------------------------------------------------------------------------------------------------------------
// Internal wires and registers
//---------------------------------------------------------------------------------------------------------------------
wire [ 17 : 0 ] e;//public_key
//wire [WIDTH-1:0] p,q,r,s; // four prime numbers
//reg [WIDTH-1:0] d_p,d_q,d_r,d_s; // multiplicative inverse to e(public key) respectivly p,q,r,s
//reg [WIDTH-1:0] c_p,c_q,c_r,c_s; //CRT coefficient respectivly p,q,r,s
//reg [(3*WIDTH)-1:0] qrs,prs,pqs,pqr; // for CRT calculation
reg [(3*WIDTH)-1:0] temp_1,temp_2,temp_3,temp_4; // for CRT calculation & CRT coefficient calculation
reg [WIDTH-1 : 0] CRT_mem [0 : 11];//
//wire pqrs_ready;
/*
multiplicarive invers
mod CRT_mem[0] -> q mod p process 01
mod CRT_mem[1] -> r mod p process 02
mod CRT_mem[2] -> s mod p process 03
mod CRT_mem[3] -> p mod q process 01
mod CRT_mem[4] -> r mod q process 04
mod CRT_mem[5] -> s mod q process 05
mod CRT_mem[6] -> p mod r process 02
mod CRT_mem[7] -> q mod r process 04
mod CRT_mem[8] -> s mod r process 06
mod CRT_mem[9] -> p mod s process 03
mod CRT_mem[10] -> q mod s process 05
mod CRT_mem[11] -> r mod s process 06
*/
reg [WIDTH-1:0] Multiplicative_Num_engine_00;
reg [WIDTH-1:0] Modular_engine_00;
wire [WIDTH-1:0] Multiplicative_Inv_Mod_engine_00;
wire [WIDTH-1:0] Multiplicative_Inv_Num_engine_00;
wire Multiplicative_Inv_Done_engine_00;
reg [WIDTH-1:0] Multiplicative_Num_engine_01;
reg [WIDTH-1:0] Modular_engine_01;
wire [WIDTH-1:0] Multiplicative_Inv_Mod_engine_01;
wire [WIDTH-1:0] Multiplicative_Inv_Num_engine_01;
wire Multiplicative_Inv_Done_engine_01;
reg [WIDTH-1:0] Multiplicative_Num_engine_02;
reg [WIDTH-1:0] Modular_engine_02;
wire [WIDTH-1:0] Multiplicative_Inv_Mod_engine_02;
wire [WIDTH-1:0] Multiplicative_Inv_Num_engine_02;
wire Multiplicative_Inv_Done_engine_02;
reg [WIDTH-1:0] Multiplicative_Num_engine_03;
reg [WIDTH-1:0] Modular_engine_03;
wire [WIDTH-1:0] Multiplicative_Inv_Mod_engine_03;
wire [WIDTH-1:0] Multiplicative_Inv_Num_engine_03;
wire Multiplicative_Inv_Done_engine_03;
reg [ 2 : 0 ] init_round_count;
reg start_init;// start iniit
reg start_new;
reg start_round;
reg [ 3 : 0 ] state_init;
reg [ 2 : 0 ] state_round;
reg init_round_done;
reg change_done;
reg [ 2 : 0 ] count;
//----------------------------------------------------------------
// assignments for ports.
//----------------------------------------------------------------
assign e = 17'd65537;
/*assign temp_1 = CRT_mem[0]*CRT_mem[1]*CRT_mem[2];
assign temp_2 = CRT_mem[3]*CRT_mem[4]*CRT_mem[5];
assign temp_3 = CRT_mem[6]*CRT_mem[7]*CRT_mem[8];
assign temp_4 = CRT_mem[9]*CRT_mem[10]*CRT_mem[11];*/
//---------------------------------------------------------------------------------------------------------------------
// Implementation
//---------------------------------------------------------------------------------------------------------------------
always @(aresetn,temp_1,temp_2,temp_3,temp_4) begin
if(!aresetn) begin
c_p = 512'd0;
c_q = 512'd0;
c_r = 512'd0;
c_s = 512'd0;
end else begin
c_p = temp_1%p;
c_q = temp_2%q;
c_r = temp_3%r;
c_s = temp_4%s;
end
end
always @*
begin : CRT_memeory
temp_1 = CRT_mem[4'd0]*CRT_mem[4'd1]*CRT_mem[4'd2];
temp_2 = CRT_mem[4'd3]*CRT_mem[4'd4]*CRT_mem[4'd5];
temp_3 = CRT_mem[4'd6]*CRT_mem[4'd7]*CRT_mem[4'd8];
temp_4 = CRT_mem[4'd9]*CRT_mem[4'd10]*CRT_mem[4'd11];
end // CRT_mem
/*always @*
begin : pqrs_con
qrs = q*r*s;
prs = p*r*s;
pqs = p*q*s;
pqr = p*q*r;
end // pqrs_con
always @*
begin : pqrs_dec
pqrs = p*q*r*s;
pqrs_done = pqrs_ready;
end // pqrs_dec*/
//start selector
always @(*) begin //next -> relpace by pqrs_ready
if(pqrs_ready && init_round_count == 3'b0) begin
start_init = 1'b1;
count = 3'b0;
/*p = 512'd5 ;//5
q = 512'd11;
r = 512'd17;
s = 512'd19;*/
end else if(pqrs_ready && init_round_count != 3'b0 ) begin
start_new = 1'b1;
start_init = 1'b0;
end else begin
start_init = 1'b0;
start_new = 1'b0;
end
end
//output done
always @(init_round_done,change_done,next)begin
if ((init_round_done || change_done) && !next) begin
done = 1'b1;
end else if(next) begin
done = 1'b0;
end
end // done
always @(*) begin
if (change_done) begin
count = (count + 1'd1)%3'd4;
end
end
//load p,q,r,s
/*always @(posedge aclk) begin
if(!aresetn) begin
start_init <= 1'b0;
end else begin
//load from fifo pqrs
case ()
default : ;
endcase
end*o?-
end*/
/*assign p = 512'd5 ;
assign q = 512'd11;
assign r = 512'd17;
assign s = 512'd19;*/
/*always @*
begin : pqrs
p = 512'd5 ;
q = 512'd11;
r = 512'd17;
s = 512'd19;
end // pqrs*/
//FSM
always @(posedge aclk) begin
if(!aresetn) begin
state_init <= STATE_IDLE;
end else begin
case (state_init)
STATE_IDLE :
begin
if (start_init) begin
state_init <= STATE_INIT_INIT;
end
end
STATE_INIT_INIT:
begin
if(Multiplicative_Inv_Done_engine_00 &&
Multiplicative_Inv_Done_engine_01 &&
Multiplicative_Inv_Done_engine_02 &&
Multiplicative_Inv_Done_engine_03) begin
state_init <= STATE_INIT_DONE;
end
end
STATE_INIT_DONE :
begin
state_init <= STATE_INIT_ROUND;
end
STATE_INIT_ROUND ://3
begin
state_init <= STATE_INIT_NEXT;
end
STATE_INIT_NEXT :
begin
if (Multiplicative_Inv_Done_engine_01 &&
Multiplicative_Inv_Done_engine_02 &&
Multiplicative_Inv_Done_engine_03) begin
state_init <= STATE_INIT_RUN;
end
end
STATE_INIT_RUN :
begin
if (init_round_count == 3'd1) begin
state_init <= STATE_INIT_ROUND_DONE;
end else begin
state_init <= STATE_INIT_ROUND;
end
end
STATE_INIT_ROUND_DONE :
begin
state_init <= STATE_IDLE;
end
default : /* default */;
endcase
end
end
//mian
always @(posedge aclk) begin
if(!aresetn) begin
d_p <= 512'b0;
d_q <= 512'b0;
d_r <= 512'b0;
d_s <= 512'b0;
end else begin
case (state_init)
STATE_IDLE :
begin
end
STATE_INIT_INIT:
begin
Multiplicative_Num_engine_00 <= e;
Modular_engine_00 <= p-512'd1;
Multiplicative_Num_engine_01 <= e;
Modular_engine_01 <= q-512'd1;
Multiplicative_Num_engine_02 <= e;
Modular_engine_02 <= r-512'd1;
Multiplicative_Num_engine_03 <= e;
Modular_engine_03 <= s-512'd1;
end
STATE_INIT_DONE :
begin
d_p <= Multiplicative_Inv_Num_engine_00;
d_q <= Multiplicative_Inv_Num_engine_01;
d_r <= Multiplicative_Inv_Num_engine_02;
d_s <= Multiplicative_Inv_Num_engine_03;
end
STATE_INIT_ROUND ://3
begin
if (init_round_count == 3'd0) begin
//q mod p process 01
//p mod q process 01
Multiplicative_Num_engine_01 <= q;
Modular_engine_01 <= p;
//r mod p process 02
//p mod r process 02
Multiplicative_Num_engine_02 <= r;
Modular_engine_02 <= p;
//s mod p process 03
//p mod s process 03
Multiplicative_Num_engine_03 <= s;
Modular_engine_03 <= p;
end
if (init_round_count == 3'd1) begin
//r mod q process 04
//q mod r process 04
Multiplicative_Num_engine_01 <= r;
Modular_engine_01 <= q;
//s mod q process 05
//q mod s process 05
Multiplicative_Num_engine_02 <= s;
Modular_engine_02 <= q;
//s mod r process 06
//r mod s process 06
Multiplicative_Num_engine_03 <= s;
Modular_engine_03 <= r;
end
end
STATE_INIT_RUN ://4
begin
if (init_round_count == 3'd0) begin
CRT_mem[4'd0] <= Multiplicative_Inv_Num_engine_01; //> q mod p process 01
CRT_mem[4'd3] <= Multiplicative_Inv_Mod_engine_01; //> p mod q process 01
CRT_mem[4'd1] <= Multiplicative_Inv_Num_engine_02; //> r mod p process 02
CRT_mem[4'd6] <= Multiplicative_Inv_Mod_engine_02; //> p mod r process 02
CRT_mem[4'd2] <= Multiplicative_Inv_Num_engine_03; //> s mod p process 03
CRT_mem[4'd9] <= Multiplicative_Inv_Mod_engine_03; //> p mod s process 03
end
if (init_round_count == 3'd1) begin
CRT_mem[4'd4] <= Multiplicative_Inv_Num_engine_01; //> r mod q process 04
CRT_mem[4'd7] <= Multiplicative_Inv_Mod_engine_01; //> q mod r process 04
CRT_mem[4'd5] <= Multiplicative_Inv_Num_engine_02; //> s mod q process 05
CRT_mem[4'd10] <= Multiplicative_Inv_Mod_engine_02; //> q mod s process 05
CRT_mem[4'd8] <= Multiplicative_Inv_Num_engine_03; //> s mod r process 06
CRT_mem[4'd11] <= Multiplicative_Inv_Mod_engine_03; //> r mod s process 06
end
end
default : /* default */;
endcase
end
end
//init_round_count
always @(posedge aclk) begin
if(!aresetn) begin
init_round_count <= 3'b0;
end else begin
case (state_init)
STATE_IDLE :
begin
//init_round_count <= 3'b0;
end
STATE_INIT_RUN :
begin
init_round_count <= init_round_count + 1'b1;
end
default : /* default */;
endcase
end
end
//init_round_done
always @(posedge aclk) begin
if(!aresetn) begin
init_round_done <= 1'b0;;
end else begin
case (state_init)
STATE_IDLE :
begin
init_round_done <= 1'b0;
end
STATE_INIT_ROUND_DONE :
begin
init_round_done <= 1'b1;
end
default : /* default */;
endcase
end
end
ext_euclidean
#(
.WIDTH (WIDTH)
)
ext_euclidean_engine_00
(
.aclk (aclk ),
.aresetn(aresetn),
.Multiplicative_Num(Multiplicative_Num_engine_00),
.Modular(Modular_engine_00),
.Multiplicative_Inv_Mod(Multiplicative_Inv_Mod_engine_00),
.Multiplicative_Inv_Num(Multiplicative_Inv_Num_engine_00),
.Multiplicative_Inv_Done(Multiplicative_Inv_Done_engine_00)
//.error (error)
);
ext_euclidean
#(
.WIDTH (WIDTH)
)
ext_euclidean_engine_01
(
.aclk (aclk ),
.aresetn(aresetn),
.Multiplicative_Num(Multiplicative_Num_engine_01),
.Modular(Modular_engine_01),
.Multiplicative_Inv_Mod(Multiplicative_Inv_Mod_engine_01),
.Multiplicative_Inv_Num(Multiplicative_Inv_Num_engine_01),
.Multiplicative_Inv_Done(Multiplicative_Inv_Done_engine_01)
//.error (error)
);
ext_euclidean
#(
.WIDTH (WIDTH)
)
ext_euclidean_engine_02
(
.aclk (aclk ),
.aresetn(aresetn),
.Multiplicative_Num(Multiplicative_Num_engine_02),
.Modular(Modular_engine_02),
.Multiplicative_Inv_Mod(Multiplicative_Inv_Mod_engine_02),
.Multiplicative_Inv_Num(Multiplicative_Inv_Num_engine_02),
.Multiplicative_Inv_Done(Multiplicative_Inv_Done_engine_02)
//.error (error)
);
ext_euclidean
#(
.WIDTH (WIDTH)
)
ext_euclidean_engine_03
(
.aclk (aclk ),
.aresetn(aresetn),
.Multiplicative_Num(Multiplicative_Num_engine_03),
.Modular(Modular_engine_03),
.Multiplicative_Inv_Mod(Multiplicative_Inv_Mod_engine_03),
.Multiplicative_Inv_Num(Multiplicative_Inv_Num_engine_03),
.Multiplicative_Inv_Done(Multiplicative_Inv_Done_engine_03)
//.error (error)
);
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
prime_feed
#(
.WIDTH(WIDTH)
)
prime_feed_dut
(
.aclk(aclk),
.aresetn(aresetn),
.next(next),
.pqrs_ready(pqrs_ready),
.p(p),
.q(q),
.r(r),
.s(s)
);
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*always @(*) begin
if (start_new) begin
case (count)
3'd0: p = 512'd23;
3'd1: q = 512'd23;
3'd2: r = 512'd23;
3'd3: s = 512'd23;
default : ;
endcase
start_round = 1'b1;
end else begin
start_round = 1'b0;
end
end*/
//FSM 2
always @(posedge aclk) begin
if(!aresetn) begin
state_round <= STATE_ROUN_INIT;
end else begin
case (state_round)
STATE_ROUN_INIT :
begin
if (start_new) begin//start_round
state_round <= STATE_ROUN_RUN;
end
end
STATE_ROUN_RUN :
begin
state_round <= STATE_ROUND_NEXT;
end
STATE_ROUND_NEXT :
begin
if (Multiplicative_Inv_Done_engine_00 &&
Multiplicative_Inv_Done_engine_01 &&
Multiplicative_Inv_Done_engine_02 &&
Multiplicative_Inv_Done_engine_03) begin
state_round <= STATE_ROUND_DONE;
end
end
STATE_ROUND_DONE :
begin
state_round <= STATE_ROUN_INIT;
end
default : /* default */;
endcase
end
end
always @(posedge aclk) begin
if(!aresetn) begin
state_round <= STATE_ROUN_INIT;
end else begin
case (state_round)
STATE_ROUN_RUN :
begin
case (count)
3'd0: //p change pocess
begin
Multiplicative_Num_engine_00 <= e;
Modular_engine_00 <= p-512'd1;
//q mod p process 01
//p mod q process 01
Multiplicative_Num_engine_01 <= q;
Modular_engine_01 <= p;
//r mod p process 02
//p mod r process 02
Multiplicative_Num_engine_02 <= r;
Modular_engine_02 <= p;
//s mod p process 03
//p mod s process 03
Multiplicative_Num_engine_03 <= s;
Modular_engine_03 <= p;
end
3'd1: //q change pocess
begin
Multiplicative_Num_engine_00 <= e;
Modular_engine_00 <= q-512'd1;
//q mod p process 01
//p mod q process 01
Multiplicative_Num_engine_01 <= q;
Modular_engine_01 <= p;
//r mod q process 04
//q mod r process 04
Multiplicative_Num_engine_02 <= r;
Modular_engine_02 <= q;
//s mod q process 05
//q mod s process 05
Multiplicative_Num_engine_03 <= s;
Modular_engine_03 <= q;
end
3'd2: //r change pocess
begin
Multiplicative_Num_engine_00 <= e;
Modular_engine_00 <= r-512'd1;
//r mod p process 02
//p mod r process 02
Multiplicative_Num_engine_01 <= r;
Modular_engine_01 <= p;
//r mod q process 04
//q mod r process 04
Multiplicative_Num_engine_02 <= r;
Modular_engine_02 <= q;
//s mod r process 06
//r mod s process 06
Multiplicative_Num_engine_03 <= s;
Modular_engine_03 <= r;
end
3'd3: //s change pocess
begin
Multiplicative_Num_engine_00 <= e;
Modular_engine_00 <= s-512'd1;
//s mod p process 03
//p mod s process 03
Multiplicative_Num_engine_01 <= s;
Modular_engine_01 <= p;
//s mod q process 05
//q mod s process 05
Multiplicative_Num_engine_02 <= s;
Modular_engine_02 <= q;
//s mod r process 06
//r mod s process 06
Multiplicative_Num_engine_03 <= s;
Modular_engine_03 <= r;
end
default : ;
endcase
end
default : /* default */;
endcase
end
end
//done round
always @(posedge aclk) begin
if(!aresetn) begin
change_done <= 1'b0;
end else begin
case (state_round)
STATE_ROUN_INIT :
begin
change_done <= 1'b0;
end
STATE_ROUND_DONE :
begin
case (count)
3'd0: //p change pocess
begin
d_p <= Multiplicative_Inv_Num_engine_00;
CRT_mem[4'd0] <= Multiplicative_Inv_Num_engine_01; //> q mod p process 01
CRT_mem[4'd3] <= Multiplicative_Inv_Mod_engine_01; //> p mod q process 01
CRT_mem[4'd1] <= Multiplicative_Inv_Num_engine_02; //> r mod p process 02
CRT_mem[4'd6] <= Multiplicative_Inv_Mod_engine_02; //> p mod r process 02
CRT_mem[4'd2] <= Multiplicative_Inv_Num_engine_03; //> s mod p process 03
CRT_mem[4'd9] <= Multiplicative_Inv_Mod_engine_03; //> p mod s process 03
end
3'd1: //q change pocess
begin
d_q <= Multiplicative_Inv_Num_engine_00;
CRT_mem[4'd0] <= Multiplicative_Inv_Num_engine_01; //> q mod p process 01
CRT_mem[4'd3] <= Multiplicative_Inv_Mod_engine_01; //> p mod q process 01
CRT_mem[4'd4] <= Multiplicative_Inv_Num_engine_02; //> r mod q process 04
CRT_mem[4'd7] <= Multiplicative_Inv_Mod_engine_02; //> q mod r process 04
CRT_mem[4'd5] <= Multiplicative_Inv_Num_engine_03; //> s mod q process 05
CRT_mem[4'd10] <= Multiplicative_Inv_Mod_engine_03; //> q mod s process 05
end
3'd2: //r change pocess
begin
d_r <= Multiplicative_Inv_Num_engine_00;
CRT_mem[4'd1] <= Multiplicative_Inv_Num_engine_01; //> r mod p process 02
CRT_mem[4'd6] <= Multiplicative_Inv_Mod_engine_01; //> p mod r process 02
CRT_mem[4'd4] <= Multiplicative_Inv_Num_engine_02; //> r mod q process 04
CRT_mem[4'd7] <= Multiplicative_Inv_Mod_engine_02; //> q mod r process 04
CRT_mem[4'd8] <= Multiplicative_Inv_Num_engine_03; //> s mod r process 06
CRT_mem[4'd11] <= Multiplicative_Inv_Mod_engine_03; //> r mod s process 06
end
3'd3: //s change pocess
begin
d_s <= Multiplicative_Inv_Num_engine_00;
CRT_mem[4'd2] <= Multiplicative_Inv_Num_engine_01; //> s mod p process 03
CRT_mem[4'd9] <= Multiplicative_Inv_Mod_engine_01; //> p mod s process 03
CRT_mem[4'd5] <= Multiplicative_Inv_Num_engine_02; //> s mod q process 05
CRT_mem[4'd10] <= Multiplicative_Inv_Mod_engine_02; //> q mod s process 05
CRT_mem[4'd8] <= Multiplicative_Inv_Num_engine_03; //> s mod r process 06
CRT_mem[4'd11] <= Multiplicative_Inv_Mod_engine_03; //> r mod s process 06
end
default : /* default */;
endcase
change_done <= 1'b1;
end
default : /* default */;
endcase
end
end
/*integer i;
always @(posedge aclk ) begin
if(!aresetn) begin
end else begin
if (done) begin
for ( i = 0; i < 12; i=i+1) begin
$display("CRT_mem %h",CRT_mem[i]);
end
$display("CRT_mem .....................");
end
end
end*/
endmodule //RSA_KEYGEN_Engine