diff --git a/your-code/main.ipynb b/your-code/main.ipynb index e66d6ce..839540e 100644 --- a/your-code/main.ipynb +++ b/your-code/main.ipynb @@ -12,11 +12,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "\n", + "import numpy as np" ] }, { @@ -28,11 +30,21 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NumPy Version : 1.24.2\n" + ] + } + ], + "source": [ + "# your code here\n", + "\n", + "print(\"NumPy Version : \",np.__version__)" ] }, { @@ -45,29 +57,89 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Method 1" + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[0.49394801, 0.41606977, 0.99594286, 0.16336667],\n", + " [0.40480256, 0.42771307, 0.61766931, 0.38438541],\n", + " [0.02539472, 0.51858253, 0.32983082, 0.45802613]],\n", + "\n", + " [[0.82307997, 0.59724382, 0.17152116, 0.41463204],\n", + " [0.24915744, 0.59025771, 0.58242819, 0.29615499],\n", + " [0.02870235, 0.87646794, 0.29586079, 0.11474045]]])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Method 1\n", + "\n", + "a = np.random.random(size = (2,3,4))\n", + "a" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Method 2" + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[0.68792027, 0.91506177, 0.17069798, 0.91554771, 0.66658621],\n", + " [0.50636034, 0.20579295, 0.77528482, 0.10918329, 0.44881792],\n", + " [0.1614752 , 0.95593983, 0.72585752, 0.94133837, 0.27115026]],\n", + "\n", + " [[0.67429144, 0.98566251, 0.50494178, 0.34624013, 0.21878849],\n", + " [0.13481798, 0.78977384, 0.05629741, 0.09793456, 0.67794858],\n", + " [0.30028245, 0.44141246, 0.6870931 , 0.6099192 , 0.2525572 ]]])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Method 2\n", + "\n", + "a = np.random.random_sample((2, 3, 5))\n", + "a" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Method 3" + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[8, 6, 0, 3, 0],\n", + " [8, 0, 2, 5, 7],\n", + " [5, 1, 6, 4, 7]],\n", + "\n", + " [[1, 8, 9, 4, 7],\n", + " [1, 5, 8, 5, 9],\n", + " [5, 3, 2, 2, 9]]])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Method 3\n", + "\n", + "a = np.random.randint(0, 10, size=(2, 3, 5))\n", + "a" ] }, { @@ -79,11 +151,29 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[8, 6, 0, 3, 0],\n", + " [8, 0, 2, 5, 7],\n", + " [5, 1, 6, 4, 7]],\n", + "\n", + " [[1, 8, 9, 4, 7],\n", + " [1, 5, 8, 5, 9],\n", + " [5, 3, 2, 2, 9]]])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# your code here\n", + "a" ] }, { @@ -95,11 +185,38 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[1., 1., 1.],\n", + " [1., 1., 1.]],\n", + "\n", + " [[1., 1., 1.],\n", + " [1., 1., 1.]],\n", + "\n", + " [[1., 1., 1.],\n", + " [1., 1., 1.]],\n", + "\n", + " [[1., 1., 1.],\n", + " [1., 1., 1.]],\n", + "\n", + " [[1., 1., 1.],\n", + " [1., 1., 1.]]])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# your code here\n", + "\n", + "b = np.ones((5, 2, 3))\n", + "b" ] }, { @@ -111,11 +228,37 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[1., 1., 1.],\n", + " [1., 1., 1.]],\n", + "\n", + " [[1., 1., 1.],\n", + " [1., 1., 1.]],\n", + "\n", + " [[1., 1., 1.],\n", + " [1., 1., 1.]],\n", + "\n", + " [[1., 1., 1.],\n", + " [1., 1., 1.]],\n", + "\n", + " [[1., 1., 1.],\n", + " [1., 1., 1.]]])" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# your code here\n", + "\n", + "b" ] }, { @@ -127,11 +270,24 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The arrays have the same size.\n" + ] + } + ], + "source": [ + "# your code here\n", + "\n", + "if a.size == b.size:\n", + " print(\"The arrays have the same size.\")\n", + "else:\n", + " print(\"The arrays do not have the same size.\")" ] }, { @@ -143,14 +299,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your answer here" + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The arrays cannot be added.\n" + ] + } + ], + "source": [ + "# your answer here\n", + "\n", + "if a.shape == b.shape:\n", + " print(\"The arrays can be added.\")\n", + "else:\n", + " print(\"The arrays cannot be added.\")\n", + "\n", + " # arrays can only be added if they share the same shape" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -159,11 +331,32 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[1., 1., 1., 1., 1.],\n", + " [1., 1., 1., 1., 1.],\n", + " [1., 1., 1., 1., 1.]],\n", + "\n", + " [[1., 1., 1., 1., 1.],\n", + " [1., 1., 1., 1., 1.],\n", + " [1., 1., 1., 1., 1.]]])" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# your code here\n", + "\n", + "c = b.transpose((1, 2, 0))\n", + "\n", + "c" ] }, { @@ -175,11 +368,34 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code/answer here" + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[ 9., 7., 1., 4., 1.],\n", + " [ 9., 1., 3., 6., 8.],\n", + " [ 6., 2., 7., 5., 8.]],\n", + "\n", + " [[ 2., 9., 10., 5., 8.],\n", + " [ 2., 6., 9., 6., 10.],\n", + " [ 6., 4., 3., 3., 10.]]])" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# your code/answer here\n", + "\n", + "d = a + c\n", + "\n", + "d\n", + "\n", + "# Because both a and c share the same shape (2x3x5)" ] }, { @@ -191,11 +407,38 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code/answer here" + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[[8 6 0 3 0]\n", + " [8 0 2 5 7]\n", + " [5 1 6 4 7]]\n", + "\n", + " [[1 8 9 4 7]\n", + " [1 5 8 5 9]\n", + " [5 3 2 2 9]]]\n", + "[[[ 9. 7. 1. 4. 1.]\n", + " [ 9. 1. 3. 6. 8.]\n", + " [ 6. 2. 7. 5. 8.]]\n", + "\n", + " [[ 2. 9. 10. 5. 8.]\n", + " [ 2. 6. 9. 6. 10.]\n", + " [ 6. 4. 3. 3. 10.]]]\n" + ] + } + ], + "source": [ + "# your code/answer here\n", + "\n", + "print(a)\n", + "\n", + "print(d)\n", + "\n", + "# because d is the sum between a and c, d has then the same values as a but icremented by one" ] }, { @@ -207,11 +450,32 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[8., 6., 0., 3., 0.],\n", + " [8., 0., 2., 5., 7.],\n", + " [5., 1., 6., 4., 7.]],\n", + "\n", + " [[1., 8., 9., 4., 7.],\n", + " [1., 5., 8., 5., 9.],\n", + " [5., 3., 2., 2., 9.]]])" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# your code here\n", + "\n", + "e = a * c\n", + "\n", + "e" ] }, { @@ -223,11 +487,26 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code/answer here" + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "e is equal to a\n" + ] + } + ], + "source": [ + "# your code/answer here\n", + "\n", + "if np.array_equal(e, a):\n", + " print(\"e is equal to a\")\n", + "else:\n", + " print(\"e is not equal to a\")\n", + "\n", + " # because a is just an array of random numbers and e is a multiplication between a and c, they cant be equal" ] }, { @@ -239,11 +518,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum value in d: 10.0\n", + "Minimum value in d: 1.0\n", + "Mean value of d: 5.666666666666667\n" + ] + } + ], + "source": [ + "# your code here\n", + "\n", + "d_max = np.max(d)\n", + "print(\"Maximum value in d:\", d_max)\n", + "\n", + "d_min = np.min(d)\n", + "print(\"Minimum value in d:\", d_min)\n", + "\n", + "d_mean = np.mean(d)\n", + "print(\"Mean value of d:\", d_mean)" ] }, { @@ -255,11 +553,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "\n", + "f = np.empty((2, 3, 5))" ] }, { @@ -275,11 +575,25 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "\n", + "for i in range(2):\n", + " for j in range(3):\n", + " for k in range(5):\n", + " if d[i, j, k] == d_min:\n", + " f[i, j, k] = 0\n", + " elif d_min < d[i, j, k] < d_mean:\n", + " f[i, j, k] = 25\n", + " elif d[i, j, k] == d_mean:\n", + " f[i, j, k] = 50\n", + " elif d_mean < d[i, j, k] < d_max:\n", + " f[i, j, k] = 75\n", + " else:\n", + " f[i, j, k] = 100\n" ] }, { @@ -309,11 +623,36 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# your code here" + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[[ 9. 7. 1. 4. 1.]\n", + " [ 9. 1. 3. 6. 8.]\n", + " [ 6. 2. 7. 5. 8.]]\n", + "\n", + " [[ 2. 9. 10. 5. 8.]\n", + " [ 2. 6. 9. 6. 10.]\n", + " [ 6. 4. 3. 3. 10.]]]\n", + "[[[ 75. 75. 0. 25. 0.]\n", + " [ 75. 0. 25. 75. 75.]\n", + " [ 75. 25. 75. 25. 75.]]\n", + "\n", + " [[ 25. 75. 100. 25. 75.]\n", + " [ 25. 75. 75. 75. 100.]\n", + " [ 75. 25. 25. 25. 100.]]]\n" + ] + } + ], + "source": [ + "# your code here\n", + "\n", + "print(d)\n", + "\n", + "print(f)" ] }, { @@ -335,12 +674,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ - "# your code here" + "# your code here\n", + "\n", + "# I guess the previous is already wrong" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -359,7 +707,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.11.2" } }, "nbformat": 4,