-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_train.py
244 lines (204 loc) · 10 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#local + global + channel
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
import os.path as osp
import torch
import torch.nn as nn
from torch.utils import data
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import itertools
from perceptual import LossNetwork
from torchvision.models import vgg16
import numpy as np
import random
from tqdm import tqdm
from datetime import datetime
from model.EncDec import Network_top #image restoration network
from model.style_filter64 import StyleFilter_Top #style discriminator
from train_data_functions import TrainingDataset
from utils_network import validation_train
from configs.train_main_config import get_arguments
RESTORE_FROM = 'without_pretraining'
def loss_calc(pred, gt, loss_network, lambda_loss):
smooth_loss = F.smooth_l1_loss(pred, gt)
perceptual_loss = loss_network(pred, gt)
return smooth_loss + lambda_loss*perceptual_loss
def make_list(x):
"""Returns the given input as a list."""
if isinstance(x, list):
return x
elif isinstance(x, tuple):
return list(x)
else:
return [x]
def main():
"""Create the model and start the training."""
args = get_arguments()
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
now = datetime.now().strftime('%m-%d-%H-%M')
run_name = f'{args.file_name}-{now}'
cudnn.enabled = True
# --- Gpu device --- #
device_ids = [1,0]
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
#instantiate the encoder-decoder
if args.restore_from == RESTORE_FROM: #default: without pretraining
start_iter = 0
model = Network_top().to(device)
model = nn.DataParallel(model, device_ids=device_ids)
else:
restore = torch.load(args.restore_from, map_location=lambda storage, loc: storage).module.state_dict()
weights_dict = {}
for k, v in restore.items():
new_k = 'module.' + k
weights_dict[new_k] = v
model = Network_top().to(device)
model = nn.DataParallel(model, device_ids=device_ids)
model.load_state_dict(weights_dict)
#restore = torch.load(args.restore_from, map_location=lambda storage, loc: storage)["state_dict"]
#model = Network_top().to(device)
#model = nn.DataParallel(model, device_ids=device_ids)
#model.load_state_dict(restore)
start_iter = 0
model.train()
#instantiate style discriminators, and their optimizers
StyleFilter = StyleFilter_Top() #input size: c*(c+1)/2 #2080?
StyleFilter.to(device)
StyleFilter = nn.DataParallel(StyleFilter, device_ids=device_ids)
restore = torch.load(args.restore_from_stylefilter)
StyleFilter.load_state_dict(restore)
for param in StyleFilter.parameters(): # if don't train the StyleFilter
param.require_grad = False
StyleFilter.eval()
#StyleFilter.train()
lambda_loss = args.lambda_loss #loss weight
#initialize perceptual loss model
vgg_model = vgg16(pretrained=True).features[:16]
vgg_model = vgg_model.to(device)
# vgg_model = nn.DataParallel(vgg_model, device_ids=device_ids)
for param in vgg_model.parameters():
param.requires_grad = False
loss_network = LossNetwork(vgg_model)
loss_network.eval()
cudnn.benchmark = True
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
crop_size = args.crop_size
train_data_dir = args.train_data_dir
labeled_name = args.labeled_name
raindrop_dataset = TrainingDataset(0, crop_size, train_data_dir,labeled_name)
raindrop_loader = data.DataLoader(raindrop_dataset, batch_size=10, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load raindrop dataset (drop last)
raindrop_loader_iter = enumerate(raindrop_loader)
rain_dataset = TrainingDataset(1, crop_size, train_data_dir,labeled_name)
rain_loader = data.DataLoader(rain_dataset,batch_size=11, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load rain dataset
rain_loader_iter = enumerate(rain_loader)
snow_dataset = TrainingDataset(2, crop_size, train_data_dir,labeled_name)
snow_loader = data.DataLoader(snow_dataset,batch_size=11, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load snow dataset
snow_loader_iter = enumerate(snow_loader)
full_dataset = TrainingDataset(3, crop_size, train_data_dir,labeled_name)
train_size = int(0.95 * len(full_dataset))
test_size = len(full_dataset) - train_size
_, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size])
val_data_loader = data.DataLoader(test_dataset, batch_size=4, shuffle=True, num_workers=args.num_workers, pin_memory=True) # batch size?
main_lr = args.learning_rate
opts = torch.optim.Adam(model.parameters(), lr=args.learning_rate) #optimizer for only the main network
# define arrays
val_psnr_arr = np.array([])
val_psnr_pth = args.snapshot_dir + '/val_psnr.npy'
#if not(os.path.exists('./checkpoint')):
# os.mkdir('./checkpoint')
np.save(file=val_psnr_pth, arr=val_psnr_arr)
print("testing...")
old_val_psnr, old_val_ssim = validation_train(StyleFilter, model, val_data_loader, device)
print('initial model PSNR: ', old_val_psnr)
processing_loss_arr = np.array([])
processing_loss_pth = args.snapshot_dir + '/processing_loss.npy'
np.save(file=processing_loss_pth, arr=processing_loss_arr)
# start training
print('Start training...')
for i_iter in tqdm(range(start_iter, args.num_steps)):
if i_iter==50000 or i_iter==75000:
main_lr = main_lr / 2
for param_group in opts.param_groups:
param_group['lr'] = main_lr
opts.zero_grad()
# train image processing network using smooth l1 loss and perceptual loss
# freeze the parameters of style filtering modules
try: #raindrop
_, batch_raindrop = raindrop_loader_iter.__next__()
except StopIteration:
raindrop_loader = data.DataLoader(raindrop_dataset, batch_size=10, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load raindrop dataset (drop last)
raindrop_loader_iter = enumerate(raindrop_loader)
_, batch_raindrop = raindrop_loader_iter.__next__()
raindrop_img, gt_raindrop_img = batch_raindrop
imgs_raindrop = Variable(raindrop_img).to(device)
try: #rain
_, batch_rain = rain_loader_iter.__next__()
except StopIteration:
rain_loader = data.DataLoader(rain_dataset, batch_size=11, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load raindrop dataset (drop last)
rain_loader_iter = enumerate(rain_loader)
_, batch_rain = rain_loader_iter.__next__()
rain_img, gt_rain_img = batch_rain
imgs_rain = Variable(rain_img).to(device)
try: #snow
_, batch_snow = snow_loader_iter.__next__()
except StopIteration:
snow_loader = data.DataLoader(snow_dataset, batch_size=11, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load raindrop dataset (drop last)
snow_loader_iter = enumerate(snow_loader)
_, batch_snow = snow_loader_iter.__next__()
snow_img, gt_snow_img = batch_snow
imgs_snow = Variable(snow_img).to(device)
imgs_input = torch.cat([imgs_raindrop, imgs_rain, imgs_snow], dim=0)
gt = torch.cat([gt_raindrop_img, gt_rain_img, gt_snow_img], dim=0)
feature_vec = StyleFilter(imgs_input)
pred = model(imgs_input, feature_vec)
loss_p = loss_calc(pred, gt.to(device), loss_network, lambda_loss)
# image processing loss
loss = loss_p
loss.backward()
loss_p_value = loss_p.data.cpu().numpy() # image processing loss
if i_iter % args.loss_save_step == 0:
processing_loss_arr = np.load(file=processing_loss_pth)
processing_loss_arr = np.append(processing_loss_arr, loss_p_value)
np.save(file=processing_loss_pth, arr=processing_loss_arr)
print('image processing loss:', loss_p_value)
opts.step() # update the parameters of the image processing network
if i_iter >= args.num_steps_stop - 1: #save model in the end
print('save model ..')
torch.save(model.state_dict(), osp.join(args.snapshot_dir, args.file_name + str(args.num_steps_stop) + '.pth'))
break
if i_iter % args.save_pred_every == 0 and i_iter != 0: #checkpoint
print('taking snapshot ...')
torch.save({
'state_dict':model.state_dict(),
'train_iter':i_iter,
'args':args
},osp.join(args.snapshot_dir, run_name)+'_backbone'+str(i_iter)+'.pth')
if i_iter % args.loss_save_step == 0 and i_iter != 0: #save best
print('testing...')
val_psnr, val_ssim = validation_train(StyleFilter, model, val_data_loader, device)
val_psnr_arr = np.load(file=val_psnr_pth)
val_psnr_arr = np.append(val_psnr_arr, val_psnr)
np.save(file=val_psnr_pth, arr=val_psnr_arr)
print('iter: ', i_iter)
print('psnr: ', val_psnr)
print('ssim: ', val_ssim)
if val_psnr >= old_val_psnr:
torch.save(model, args.snapshot_dir + '/best_all')
print('model saved')
old_val_psnr = val_psnr
if __name__ == '__main__':
main()