-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_train_style.py
210 lines (172 loc) · 10 KB
/
main_train_style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#Train a style filter to generate a 64-dimension vector to represent the weather type.
import os
import os.path as osp
import torch
import torch.nn as nn
from torch.utils import data
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from perceptual import LossNetwork
from torchvision.models import vgg16
import numpy as np
import random
from tqdm import tqdm
from datetime import datetime
from model.style_filter64 import StyleFilter_Top #style discriminator
from train_data_functions import TrainingDataset, validation_train
from configs.train_style_config import get_arguments
from pytorch_metric_learning import losses
from pytorch_metric_learning.distances import CosineSimilarity
from pytorch_metric_learning.reducers import MeanReducer
IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
RESTORE_FROM_stylefilter = 'without_pretraining'
def make_list(x):
"""Returns the given input as a list."""
if isinstance(x, list):
return x
elif isinstance(x, tuple):
return list(x)
else:
return [x]
def main():
"""Create the model and start the training."""
args = get_arguments()
#torch.backends.cudnn.benchmark = False
#torch.backends.cudnn.deterministic = True
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
now = datetime.now().strftime('%m-%d-%H-%M')
run_name = f'{args.file_name}-{now}'
cudnn.enabled = True
# --- Gpu device --- #
device_ids = [Id for Id in range(torch.cuda.device_count())]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#instantiate style discriminators, and their optimizers
StyleFilter = StyleFilter_Top() #input size: c*(c+1)/2
StyleFilter_optimizer = torch.optim.Adamax([p for p in StyleFilter.parameters() if p.requires_grad == True], lr=args.lr_style)
StyleFilter.to(device)
StyleFilter = nn.DataParallel(StyleFilter, device_ids=device_ids)
for param in StyleFilter.parameters():
param.requires_grad = True
if args.restore_from_stylefilter != RESTORE_FROM_stylefilter:
#restore = torch.load(args.restore_from_stylefilter)
#StyleFilter.load_state_dict(restore)
restore = torch.load(args.restore_from_stylefilter, map_location=lambda storage, loc: storage).module.state_dict()
weights_dict = {}
for k, v in restore.items():
new_k = 'module.' + k
weights_dict[new_k] = v
StyleFilter.load_state_dict(weights_dict)
#contrastive loss for style discriminator
stylefilter_loss = losses.ContrastiveLoss(
pos_margin=0.5,
neg_margin=0,
distance=CosineSimilarity(),
reducer=MeanReducer()
)
cudnn.benchmark = True
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
crop_size = args.crop_size
train_data_dir = args.train_data_dir
labeled_name = args.labeled_name
raindrop_dataset = TrainingDataset(0, crop_size, train_data_dir,labeled_name) #load raindrop dataset (drop last)
raindrop_loader_style = data.DataLoader(raindrop_dataset, batch_size=args.batch_size_style, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True)
raindrop_loader_style_iter = enumerate(raindrop_loader_style)
rain_dataset = TrainingDataset(1, crop_size, train_data_dir,labeled_name) #load rain dataset
rain_loader_style = data.DataLoader(rain_dataset,batch_size=args.batch_size_style, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True)
rain_loader_style_iter = enumerate(rain_loader_style)
snow_dataset = TrainingDataset(2, crop_size, train_data_dir,labeled_name) #load snow dataset
snow_loader_style = data.DataLoader(snow_dataset,batch_size=args.batch_size_style, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True)
snow_loader_style_iter = enumerate(snow_loader_style)
# define arrays
style_loss_arr = np.array([])
style_loss_pth = args.snapshot_dir + '/style_loss.npy'
np.save(file=style_loss_pth, arr=style_loss_arr)
total_style_loss = 0 # save at a certain interval
cnt = 0
# start training
print('Start training...')
save_pred_every = args.save_pred_every
print('loss_save_step: ', args.loss_save_step)
for i_iter in tqdm(range(0, args.num_steps)):
if i_iter == args.num_steps / 2:
lr = args.lr_style / 2
for param_group in StyleFilter_optimizer.param_groups:
param_group['lr'] = lr
cnt = cnt + 1
StyleFilter_optimizer.zero_grad()
# train style filtering module
try: #raindrop
_, batch = raindrop_loader_style_iter.__next__()
except StopIteration:
raindrop_loader_style = data.DataLoader(raindrop_dataset, batch_size=args.batch_size_style, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load raindrop dataset (drop last)
raindrop_loader_style_iter = enumerate(raindrop_loader_style)
_, batch = raindrop_loader_style_iter.__next__()
raindrop_img, gt_raindrop_img = batch
try: #rain
_, batch = rain_loader_style_iter.__next__()
except StopIteration:
rain_loader_style = data.DataLoader(rain_dataset, batch_size=args.batch_size_style, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load raindrop dataset (drop last)
rain_loader_style_iter = enumerate(rain_loader_style)
_, batch = rain_loader_style_iter.__next__()
rain_img, gt_rain_img = batch
try: #snow
_, batch = snow_loader_style_iter.__next__()
except StopIteration:
snow_loader_style = data.DataLoader(snow_dataset, batch_size=args.batch_size_style, shuffle=True, num_workers=args.num_workers,
pin_memory=True, drop_last=True) #load raindrop dataset (drop last)
snow_loader_style_iter = enumerate(snow_loader_style)
_, batch = snow_loader_style_iter.__next__()
snow_img, gt_snow_img = batch
StyleFilter.train()
StyleFilter_optimizer.zero_grad()
raindrop_vec = StyleFilter(raindrop_img)
rain_vec = StyleFilter(rain_img)
snow_vec = StyleFilter(snow_img)
gt_vec = StyleFilter(torch.cat([gt_raindrop_img, gt_rain_img, gt_snow_img], dim=0)) #3*batch_size_style
#print('vec shape: ', snow_vec.shape)
style_embeddings = torch.cat((torch.unsqueeze(raindrop_vec[0],0),torch.unsqueeze(rain_vec[0],0),torch.unsqueeze(snow_vec[0],0),
torch.unsqueeze(raindrop_vec[1],0),torch.unsqueeze(rain_vec[1],0),torch.unsqueeze(snow_vec[1],0),
torch.unsqueeze(raindrop_vec[2],0),torch.unsqueeze(rain_vec[2],0),torch.unsqueeze(snow_vec[2],0),
torch.unsqueeze(raindrop_vec[3],0),torch.unsqueeze(rain_vec[3],0),torch.unsqueeze(snow_vec[3],0),
torch.unsqueeze(raindrop_vec[4],0),torch.unsqueeze(rain_vec[4],0),torch.unsqueeze(snow_vec[4],0),
torch.unsqueeze(raindrop_vec[5],0),torch.unsqueeze(rain_vec[5],0),torch.unsqueeze(snow_vec[5],0),
torch.unsqueeze(raindrop_vec[6],0),torch.unsqueeze(rain_vec[6],0),torch.unsqueeze(snow_vec[6],0),
torch.unsqueeze(raindrop_vec[7],0),torch.unsqueeze(rain_vec[7],0),torch.unsqueeze(snow_vec[7],0),
torch.unsqueeze(gt_vec[0],0), torch.unsqueeze(gt_vec[3],0), torch.unsqueeze(gt_vec[6],0),
torch.unsqueeze(gt_vec[9],0), torch.unsqueeze(gt_vec[12],0), torch.unsqueeze(gt_vec[15],0),
torch.unsqueeze(gt_vec[18],0), torch.unsqueeze(gt_vec[21],0)),0) # batch size = 8 ?
#print('style embedding shape: ', style_embeddings.shape)
style_labels = torch.LongTensor([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2,
3, 3, 3, 3, 3, 3, 3, 3]) # style labels of style embeddings
style_filter_loss = stylefilter_loss(style_embeddings,style_labels) # contrastive loss
total_style_loss += style_filter_loss.item()
if i_iter % args.loss_save_step == 0:
total_style_loss = total_style_loss / cnt
style_loss_arr = np.load(file=style_loss_pth)
style_loss_arr = np.append(style_loss_arr, total_style_loss)
np.save(file=style_loss_pth, arr=style_loss_arr)
print('iter: ', i_iter)
print('total style loss: ', total_style_loss)
total_style_loss = 0
cnt = 0
style_filter_loss.backward(retain_graph=False)
StyleFilter_optimizer.step() # update the parameters of the style discriminator
if i_iter == args.num_steps-1: #save style discriminators in the end
torch.save(StyleFilter.state_dict(), osp.join(args.snapshot_dir, run_name)+'_stylefilter_'+str(i_iter)+'.pth')
if i_iter % save_pred_every == 0 and i_iter != 0: #checkpoint
print('taking snapshot ...')
torch.save(StyleFilter.state_dict(), osp.join(args.snapshot_dir, run_name)+'_stylefilter_'+str(i_iter)+'.pth')
if __name__ == '__main__':
main()