-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclassify.py
50 lines (41 loc) · 1.61 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import cv2
import numpy as np
from keras.models import load_model
from process_data import detect_face
from load_data import load_dataset
from embedding import get_embedded_data
from train import normalize
from sklearn.preprocessing import Normalizer, LabelEncoder
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
import joblib
def classify(image, face_model, svm_model):
try:
image = detect_face(image)
image = np.expand_dims(image, 0)
image_embedding = get_embedded_data(face_model, image)
image_normalized = normalize(image_embedding)
prediction = svm_model.predict(image_normalized)
pred_proba = svm_model.predict_proba(image_normalized)
prob = pred_proba[0][prediction[0]]
label_encode = LabelEncoder()
label_encode.classes_ = np.load(os.path.join('model','classes.npy'))
prediction = label_encode.inverse_transform(prediction)
prediction = prediction[0]
if prob>0.5:
prediction = "I know her! It's "+prediction+"!"
elif prob>0.40:
prediction = "I'm not really sure, is it "+prediction+"?"
else:
prediction = "I don't know that is. Expand my database, maybe?"
except Exception as e:
prediction = "I can't see her face. Try another photo"
return prediction
if __name__ == "__main__":
filename = 'samples/jihyo.jpg'
image = cv2.imread(filename)
face_model = load_model('model/facenet_keras.h5')
svm_model = joblib.load('model/svm_model.sav')
pred = classify(image, face_model, svm_model)
print(pred)