|
12 | 12 | }, |
13 | 13 | { |
14 | 14 | "cell_type": "code", |
15 | | - "execution_count": 0, |
| 15 | + "execution_count": null, |
16 | 16 | "metadata": { |
17 | 17 | "cellView": "form", |
18 | 18 | "colab": {}, |
|
107 | 107 | }, |
108 | 108 | { |
109 | 109 | "cell_type": "code", |
110 | | - "execution_count": 0, |
| 110 | + "execution_count": null, |
111 | 111 | "metadata": { |
112 | 112 | "colab": {}, |
113 | 113 | "colab_type": "code", |
|
120 | 120 | }, |
121 | 121 | { |
122 | 122 | "cell_type": "code", |
123 | | - "execution_count": 0, |
| 123 | + "execution_count": null, |
124 | 124 | "metadata": { |
125 | 125 | "colab": {}, |
126 | 126 | "colab_type": "code", |
|
151 | 151 | }, |
152 | 152 | { |
153 | 153 | "cell_type": "code", |
154 | | - "execution_count": 0, |
| 154 | + "execution_count": null, |
155 | 155 | "metadata": { |
156 | 156 | "colab": {}, |
157 | 157 | "colab_type": "code", |
|
202 | 202 | }, |
203 | 203 | { |
204 | 204 | "cell_type": "code", |
205 | | - "execution_count": 0, |
| 205 | + "execution_count": null, |
206 | 206 | "metadata": { |
207 | 207 | "colab": {}, |
208 | 208 | "colab_type": "code", |
|
257 | 257 | }, |
258 | 258 | { |
259 | 259 | "cell_type": "code", |
260 | | - "execution_count": 0, |
| 260 | + "execution_count": null, |
261 | 261 | "metadata": { |
262 | 262 | "colab": {}, |
263 | 263 | "colab_type": "code", |
|
319 | 319 | }, |
320 | 320 | { |
321 | 321 | "cell_type": "code", |
322 | | - "execution_count": 0, |
| 322 | + "execution_count": null, |
323 | 323 | "metadata": { |
324 | 324 | "colab": {}, |
325 | 325 | "colab_type": "code", |
|
351 | 351 | }, |
352 | 352 | { |
353 | 353 | "cell_type": "code", |
354 | | - "execution_count": 0, |
| 354 | + "execution_count": null, |
355 | 355 | "metadata": { |
356 | 356 | "colab": {}, |
357 | 357 | "colab_type": "code", |
|
378 | 378 | }, |
379 | 379 | { |
380 | 380 | "cell_type": "code", |
381 | | - "execution_count": 0, |
| 381 | + "execution_count": null, |
382 | 382 | "metadata": { |
383 | 383 | "colab": {}, |
384 | 384 | "colab_type": "code", |
|
420 | 420 | "Both `tfmot.sparsity.keras.strip_pruning` and applying a standard compression algorithm (e.g. via gzip) are necessary to see the compression\n", |
421 | 421 | "benefits of pruning.\n", |
422 | 422 | "\n", |
| 423 | + "* `strip_pruning` is necessary since it removes every tf.Variable that pruning only needs during training, which would otherwise add to model size during inference\n", |
| 424 | + "* Applying a standard compression algorithm is necessary since the serialized weight matrices are the same size as they were before pruning. However, pruning makes most of the weights zeros, which is\n", |
| 425 | + "added redundancy that algorithms can utilize to further compress the model.\n", |
| 426 | + "\n", |
423 | 427 | "First, create a compressible model for TensorFlow." |
424 | 428 | ] |
425 | 429 | }, |
426 | 430 | { |
427 | 431 | "cell_type": "code", |
428 | | - "execution_count": 0, |
| 432 | + "execution_count": null, |
429 | 433 | "metadata": { |
430 | 434 | "colab": {}, |
431 | 435 | "colab_type": "code", |
|
452 | 456 | }, |
453 | 457 | { |
454 | 458 | "cell_type": "code", |
455 | | - "execution_count": 0, |
| 459 | + "execution_count": null, |
456 | 460 | "metadata": { |
457 | 461 | "colab": {}, |
458 | 462 | "colab_type": "code", |
|
483 | 487 | }, |
484 | 488 | { |
485 | 489 | "cell_type": "code", |
486 | | - "execution_count": 0, |
| 490 | + "execution_count": null, |
487 | 491 | "metadata": { |
488 | 492 | "colab": {}, |
489 | 493 | "colab_type": "code", |
|
515 | 519 | }, |
516 | 520 | { |
517 | 521 | "cell_type": "code", |
518 | | - "execution_count": 0, |
| 522 | + "execution_count": null, |
519 | 523 | "metadata": { |
520 | 524 | "colab": {}, |
521 | 525 | "colab_type": "code", |
|
550 | 554 | }, |
551 | 555 | { |
552 | 556 | "cell_type": "code", |
553 | | - "execution_count": 0, |
| 557 | + "execution_count": null, |
554 | 558 | "metadata": { |
555 | 559 | "colab": {}, |
556 | 560 | "colab_type": "code", |
|
595 | 599 | }, |
596 | 600 | { |
597 | 601 | "cell_type": "code", |
598 | | - "execution_count": 0, |
| 602 | + "execution_count": null, |
599 | 603 | "metadata": { |
600 | 604 | "colab": {}, |
601 | 605 | "colab_type": "code", |
|
647 | 651 | }, |
648 | 652 | { |
649 | 653 | "cell_type": "code", |
650 | | - "execution_count": 0, |
| 654 | + "execution_count": null, |
651 | 655 | "metadata": { |
652 | 656 | "colab": {}, |
653 | 657 | "colab_type": "code", |
|
0 commit comments