-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpKernels.cuh
179 lines (151 loc) · 7.46 KB
/
OpKernels.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#pragma once
#include "CudaArray.cuh"
#include "CudaTexture.cuh"
#include "CudaSurface.cuh"
#include "helper_math.h"
#define calxyz(n) \
int x = threadIdx.x + blockDim.x * blockIdx.x; \
int y = threadIdx.y + blockDim.y * blockIdx.y; \
int z = threadIdx.z + blockDim.z * blockIdx.z; \
if (x >= n || y >= n || z >= n) return
__global__ void advect_kernel(CudaTextureAccessor<float4> texVel, CudaSurfaceAccessor<float4> sufLoc, CudaSurfaceAccessor<char> sufBound, unsigned int n) {
calxyz(n);
auto sample = [] (CudaTextureAccessor<float4> tex, float3 loc) -> float3 {
float4 vel = tex.sample(loc.x, loc.y, loc.z);
return make_float3(vel.x, vel.y, vel.z);
};
float3 loc = make_float3(x + 0.5f, y + 0.5f, z + 0.5f);
if (sufBound.read(x, y, z) >= 0) {
float3 vel1 = sample(texVel, loc);
float3 vel2 = sample(texVel, loc - 0.5f * vel1);
float3 vel3 = sample(texVel, loc - 0.75f * vel2);
loc -= (2.f / 9.f) * vel1 + (1.f / 3.f) * vel2 + (4.f / 9.f) * vel3;
}
sufLoc.write(make_float4(loc.x, loc.y, loc.z, 0.f), x, y, z);
}
template <class T>
__global__ void resample_kernel(CudaSurfaceAccessor<float4> sufLoc, CudaTextureAccessor<T> texClr, CudaSurfaceAccessor<T> sufClrNext, unsigned int n) {
calxyz(n);
float4 loc = sufLoc.read(x, y, z);
T clr = texClr.sample(loc.x, loc.y, loc.z);
sufClrNext.write(clr, x, y, z);
}
__global__ void decay_kernel(CudaSurfaceAccessor<float> sufTmp, CudaSurfaceAccessor<float> sufTmpNext, CudaSurfaceAccessor<char> sufBound, float ambientRate, float decayRate, unsigned int n) {
calxyz(n);
if (sufBound.read(x, y, z) < 0) return;
float txp = sufTmp.read<cudaBoundaryModeClamp>(x + 1, y, z);
float typ = sufTmp.read<cudaBoundaryModeClamp>(x, y + 1, z);
float tzp = sufTmp.read<cudaBoundaryModeClamp>(x, y, z + 1);
float txn = sufTmp.read<cudaBoundaryModeClamp>(x - 1, y, z);
float tyn = sufTmp.read<cudaBoundaryModeClamp>(x, y - 1, z);
float tzn = sufTmp.read<cudaBoundaryModeClamp>(x, y, z - 1);
float tmpAvg = (txp + typ + tzp + txn + tyn + tzn) * (1 / 6.f);
float tmpNext = sufTmp.read(x, y, z);
tmpNext = (tmpNext * ambientRate + tmpAvg * (1.f - ambientRate)) * decayRate;
sufTmpNext.write(tmpNext, x, y, z);
}
__global__ void divergence_kernel(CudaSurfaceAccessor<float4> sufVel, CudaSurfaceAccessor<float> sufDiv, CudaSurfaceAccessor<char> sufBound, unsigned int n) {
calxyz(n);
if (sufBound.read(x, y, z) < 0) {
sufDiv.write(0.f, x, y, z);
return;
}
float vxp = sufVel.read<cudaBoundaryModeClamp>(x + 1, y, z).x;
float vyp = sufVel.read<cudaBoundaryModeClamp>(x, y + 1, z).y;
float vzp = sufVel.read<cudaBoundaryModeClamp>(x, y, z + 1).z;
float vxn = sufVel.read<cudaBoundaryModeClamp>(x - 1, y, z).x;
float vyn = sufVel.read<cudaBoundaryModeClamp>(x, y - 1, z).y;
float vzn = sufVel.read<cudaBoundaryModeClamp>(x, y, z - 1).z;
float div = (vxp - vxn + vyp - vyn + vzp - vzn) * 0.5f;
sufDiv.write(div, x, y, z);
}
__global__ void sumloss_kernel(CudaSurfaceAccessor<float> sufDiv, float *sum, unsigned int n) {
calxyz(n);
float div = sufDiv.read(x, y, z);
atomicAdd(sum, div * div);
}
__global__ void heatup_kernel(CudaSurfaceAccessor<float4> sufVel, CudaSurfaceAccessor<float> sufTmp, CudaSurfaceAccessor<float> sufClr, CudaSurfaceAccessor<char> sufBound, float tmpAmbient, float heatRate, float clrRate, unsigned int n) {
calxyz(n);
if (sufBound.read(x, y, z) < 0) return;
float4 vel = sufVel.read(x, y, z);
float tmp = sufTmp.read(x, y, z);
float clr = sufClr.read(x, y, z);
vel.z += heatRate * (tmp - tmpAmbient);
vel.z -= clrRate * clr;
sufVel.write(vel, x, y, z);
}
__global__ void subgradient_kernel(CudaSurfaceAccessor<float> sufPre, CudaSurfaceAccessor<float4> sufVel, CudaSurfaceAccessor<char> sufBound, unsigned int n) {
calxyz(n);
if (sufBound.read(x, y, z) < 0) return;
float pxn = sufPre.read<cudaBoundaryModeZero>(x - 1, y, z);
float pyn = sufPre.read<cudaBoundaryModeZero>(x, y - 1, z);
float pzn = sufPre.read<cudaBoundaryModeZero>(x, y, z - 1);
float pxp = sufPre.read<cudaBoundaryModeZero>(x + 1, y, z);
float pyp = sufPre.read<cudaBoundaryModeZero>(x, y + 1, z);
float pzp = sufPre.read<cudaBoundaryModeZero>(x, y, z + 1);
float4 vel = sufVel.read(x, y, z);
vel.x -= (pxp - pxn) * 0.5f;
vel.y -= (pyp - pyn) * 0.5f;
vel.z -= (pzp - pzn) * 0.5f;
sufVel.write(vel, x, y, z);
}
template <int phase>
__global__ void rbgs_kernel(CudaSurfaceAccessor<float> sufPre, CudaSurfaceAccessor<float> sufDiv, unsigned int n) {
calxyz(n);
if ((x + y + z) % 2 != phase) return;
float pxp = sufPre.read<cudaBoundaryModeClamp>(x + 1, y, z);
float pxn = sufPre.read<cudaBoundaryModeClamp>(x - 1, y, z);
float pyp = sufPre.read<cudaBoundaryModeClamp>(x, y + 1, z);
float pyn = sufPre.read<cudaBoundaryModeClamp>(x, y - 1, z);
float pzp = sufPre.read<cudaBoundaryModeClamp>(x, y, z + 1);
float pzn = sufPre.read<cudaBoundaryModeClamp>(x, y, z - 1);
float div = sufDiv.read(x, y, z);
float preNext = (pxp + pxn + pyp + pyn + pzp + pzn - div) * (1.f / 6.f);
sufPre.write(preNext, x, y, z);
}
__global__ void residual_kernel(CudaSurfaceAccessor<float> sufRes, CudaSurfaceAccessor<float> sufPre, CudaSurfaceAccessor<float> sufDiv, unsigned int n) {
calxyz(n);
float pxp = sufPre.read<cudaBoundaryModeClamp>(x + 1, y, z);
float pxn = sufPre.read<cudaBoundaryModeClamp>(x - 1, y, z);
float pyp = sufPre.read<cudaBoundaryModeClamp>(x, y + 1, z);
float pyn = sufPre.read<cudaBoundaryModeClamp>(x, y - 1, z);
float pzp = sufPre.read<cudaBoundaryModeClamp>(x, y, z + 1);
float pzn = sufPre.read<cudaBoundaryModeClamp>(x, y, z - 1);
float pre = sufPre.read(x, y, z);
float div = sufDiv.read(x, y, z);
float res = pxp + pxn + pyp + pyn + pzp + pzn - 6.f * pre - div;
sufRes.write(res, x, y, z);
}
__global__ void restrict_kernel(CudaSurfaceAccessor<float> sufPreNext, CudaSurfaceAccessor<float> sufPre, unsigned int n) {
calxyz(n);
float ooo = sufPre.read<cudaBoundaryModeClamp>(x*2, y*2, z*2);
float ioo = sufPre.read<cudaBoundaryModeClamp>(x*2+1, y*2, z*2);
float oio = sufPre.read<cudaBoundaryModeClamp>(x*2, y*2+1, z*2);
float iio = sufPre.read<cudaBoundaryModeClamp>(x*2+1, y*2+1, z*2);
float ooi = sufPre.read<cudaBoundaryModeClamp>(x*2, y*2, z*2+1);
float ioi = sufPre.read<cudaBoundaryModeClamp>(x*2+1, y*2, z*2+1);
float oii = sufPre.read<cudaBoundaryModeClamp>(x*2, y*2+1, z*2+1);
float iii = sufPre.read<cudaBoundaryModeClamp>(x*2+1, y*2+1, z*2+1);
float preNext = (ooo + ioo + oio + iio + ooi + ioi + oii + iii);
sufPreNext.write(preNext, x, y, z);
}
__global__ void fillzero_kernel(CudaSurfaceAccessor<float> sufPre, unsigned int n) {
calxyz(n);
sufPre.write(0.f, x, y, z);
}
__global__ void prolongate_kernel(CudaSurfaceAccessor<float> sufPreNext, CudaSurfaceAccessor<float> sufPre, unsigned int n) {
calxyz(n);
float preDelta = sufPre.read(x, y, z) * (0.5f / 8.f);
#pragma unroll
for (int dz = 0; dz < 2; dz++) {
#pragma unroll
for (int dy = 0; dy < 2; dy++) {
#pragma unroll
for (int dx = 0; dx < 2; dx++) {
float preNext = sufPreNext.read<cudaBoundaryModeZero>(x*2+dx, y*2+dy, z*2+dz);
preNext += preDelta;
sufPreNext.write<cudaBoundaryModeZero>(preNext, x*2+dx, y*2+dy, z*2+dz);
}
}
}
}