@@ -72,26 +72,33 @@ $!_X : X \to 1$ is the unique map from $X$ into the [[terminal object]].
7272The proof is mostly a calculation, so we present it without a lot of comment.
7373
7474``` agda
75- object-orthogonal-!-orthogonal {X = X} T f =
76- prop-ext! fwd bwd
77- where
78- module T = Terminal T
79-
80- fwd : Orthogonal C f X → Orthogonal C f (! T)
81- fwd f⊥X u v sq .centre = f⊥X u .centre .fst , f⊥X u .centre .snd , T.!-unique₂ _ _
82- fwd f⊥X u v sq .paths m = Σ-prop-path! (ap fst (f⊥X u .paths (m .fst , m .snd .fst)))
83-
84- bwd : Orthogonal C f (! T) → Orthogonal C f X
85- bwd f⊥! u .centre = f⊥! u T.! (T.!-unique₂ _ _) .centre .fst , f⊥! u T.! (T.!-unique₂ _ _) .centre .snd .fst
86- bwd f⊥! u .paths (w , eq) = Σ-prop-path! (ap fst (f⊥! _ _ _ .paths (w , eq , (T.!-unique₂ _ _))))
75+ object-orthogonal-!-orthogonal {X = X} T f = prop-ext! fwd bwd where
76+ module T = Terminal T
77+
78+ fwd : Orthogonal C f X → Orthogonal C f T.!
79+ fwd f⊥X u v sq .centre =
80+ f⊥X u .centre .fst
81+ , f⊥X u .centre .snd
82+ , T.!-unique₂ _ _
83+ fwd f⊥X u v sq .paths m = Σ-prop-path! $
84+ ap fst (f⊥X u .paths (m .fst , m .snd .fst))
85+
86+ bwd : Orthogonal C f (! T) → Orthogonal C f X
87+ bwd f⊥! u .centre =
88+ f⊥! u T.! (T.!-unique₂ _ _) .centre .fst
89+ , f⊥! u T.! (T.!-unique₂ _ _) .centre .snd .fst
90+ bwd f⊥! u .paths (w , eq) = Σ-prop-path! $
91+ ap fst (f⊥! _ _ _ .paths (w , eq , (T.!-unique₂ _ _)))
8792```
8893
8994As a passing observation we note that if $f \ortho X$ and $X \cong Y$,
9095then $f \ortho Y$. Of course, this is immediate in categories, but it
9196holds in the generality of precategories.
9297
9398``` agda
94- obj-orthogonal-iso : ∀ {a b} {X Y} (f : Hom a b) → X ≅ Y → Orthogonal C f X → Orthogonal C f Y
99+ obj-orthogonal-iso
100+ : ∀ {a b} {X Y} (f : Hom a b)
101+ → X ≅ Y → Orthogonal C f X → Orthogonal C f Y
95102```
96103
97104<!--
@@ -113,11 +120,11 @@ A slightly more interesting lemma is that, if $f$ is orthogonal to
113120itself, then it is an isomorphism:
114121
115122``` agda
116- self-orthogonal→invertible : ∀ {a b} (f : Hom a b) → Orthogonal C f f → is-invertible f
123+ self-orthogonal→invertible
124+ : ∀ {a b} (f : Hom a b) → Orthogonal C f f → is-invertible f
117125 self-orthogonal→invertible f f⊥f =
118- make-invertible (gpq .fst) (gpq .snd .snd) (gpq .snd .fst)
119- where
120- gpq = f⊥f id id (idl _ ∙ intror refl) .centre
126+ let (f , p , q) = f⊥f id id (idl _ ∙ intror refl) .centre in
127+ make-invertible f q p
121128```
122129
123130If $f$ is an epi or $g$ is a mono, then the mere existence of
@@ -127,23 +134,25 @@ _any_ lift is enough to establish that $f \ortho g$.
127134 left-epic-lift→orthogonal
128135 : (g : Hom c d)
129136 → is-epic f → Lifts C f g → Orthogonal C f g
130- left-epic-lift→orthogonal g f-epi lifts u v vf=gu =
131- is-prop∥∥→is-contr (left-epic→lift-is-prop C f-epi vf=gu) (lifts u v vf=gu)
137+ left-epic-lift→orthogonal g f-epi lifts u v vf=gu = is-prop∥∥→is-contr
138+ (left-epic→lift-is-prop C f-epi vf=gu)
139+ (lifts u v vf=gu)
132140
133141 right-monic-lift→orthogonal
134142 : (f : Hom a b)
135143 → is-monic g → Lifts C f g → Orthogonal C f g
136- right-monic-lift→orthogonal f g-mono lifts u v vf=gu =
137- is-prop∥∥→is-contr (right-monic→lift-is-prop C g-mono vf=gu) (lifts u v vf=gu)
144+ right-monic-lift→orthogonal f g-mono lifts u v vf=gu = is-prop∥∥→is-contr
145+ (right-monic→lift-is-prop C g-mono vf=gu)
146+ (lifts u v vf=gu)
138147```
139148
140149<!--
141150```agda
142151 left-epic-lift→orthogonal-class
143152 : ∀ {κ} (R : Arrows C κ)
144153 → is-epic f → Lifts C f R → Orthogonal C f R
145- left-epic-lift→orthogonal-class R f-epic lifts r r∈R =
146- left-epic-lift→orthogonal r f-epic (lifts r r∈R)
154+ left-epic-lift→orthogonal-class R f-epic lifts r r∈R = left-epic-lift→orthogonal
155+ r f-epic (lifts r r∈R)
147156
148157 right-monic-lift→orthogonal-class
149158 : ∀ {κ} (L : Arrows C κ)
@@ -159,13 +168,13 @@ other morphism.
159168``` agda
160169 invertible→left-orthogonal : (g : Hom c d) → Orthogonal C Isos g
161170 invertible→left-orthogonal g f f-inv =
162- left-epic-lift→orthogonal g (invertible→epic f-inv) $
163- invertible-left-lifts C f f-inv
171+ left-epic-lift→orthogonal g (invertible→epic f-inv)
172+ $ invertible-left-lifts C f f-inv
164173
165174 invertible→right-orthogonal : (f : Hom a b) → Orthogonal C f Isos
166175 invertible→right-orthogonal f g g-inv =
167- right-monic-lift→orthogonal f (invertible→monic g-inv) $
168- invertible-right-lifts C g g-inv
176+ right-monic-lift→orthogonal f (invertible→monic g-inv)
177+ $ invertible-right-lifts C g g-inv
169178```
170179
171180Phrased another way, the class of isomorphisms is left and right orthogonal
@@ -244,8 +253,7 @@ the object. Given a map $a : a \to \iota X$,
244253 in-subcategory→orthogonal-to-inverted
245254 : ∀ {X} {a b} {f : C.Hom a b} → D.is-invertible (r.₁ f) → Orthogonal C f (ι.₀ X)
246255 in-subcategory→orthogonal-to-inverted {X} {A} {B} {f} rf-inv a→x =
247- contr (fact , factors) λ { (g , factors') →
248- Σ-prop-path! (h≡k factors factors') }
256+ contr (fact , factors) λ { (g , factors') → Σ-prop-path! (h≡k factors factors') }
249257 where
250258 module rf = D.is-invertible rf-inv
251259 module η⁻¹ {a} = C.is-invertible (is-reflective→unit-right-is-iso r⊣ι ι-ff {a})
@@ -325,13 +333,13 @@ the subcategory:
325333 orthogonal-to-ηs→in-subcategory
326334 : ∀ {X} → (∀ B → Orthogonal C (unit.η B) X) → C.is-invertible (unit.η X)
327335 orthogonal-to-ηs→in-subcategory {X} ortho =
328- C.make-invertible x lemma (ortho X C.id .centre .snd)
329- where
336+ C.make-invertible x lemma (ortho X C.id .centre .snd) where
330337 x = ortho X C.id .centre .fst
331- lemma = unit.η _ C.∘ x ≡⟨ unit.is-natural _ _ _ ⟩
332- ιr.₁ x C.∘ unit.η (ιr.₀ X) ≡⟨ C.refl⟩∘⟨ η-comonad-commute r⊣ι ι-ff ⟩
333- ιr.₁ x C.∘ ιr.₁ (unit.η X) ≡⟨ ιr.annihilate (ortho X C.id .centre .snd) ⟩
334- C.id ∎
338+ lemma =
339+ unit.η _ C.∘ x ≡⟨ unit.is-natural _ _ _ ⟩
340+ ιr.₁ x C.∘ unit.η (ιr.₀ X) ≡⟨ C.refl⟩∘⟨ η-comonad-commute r⊣ι ι-ff ⟩
341+ ιr.₁ x C.∘ ιr.₁ (unit.η X) ≡⟨ ιr.annihilate (ortho X C.id .centre .snd) ⟩
342+ C.id ∎
335343```
336344
337345And the converse to *that* is a specialisation of the first thing we
@@ -344,6 +352,8 @@ which $\eta$ is an isomorphism.
344352 in-subcategory→orthogonal-to-ηs
345353 : ∀ {X B} → C.is-invertible (unit.η X) → Orthogonal C (unit.η B) X
346354 in-subcategory→orthogonal-to-ηs inv =
347- obj-orthogonal-iso C (unit.η _) (C.invertible→iso _ (C.is-invertible-inverse inv)) $
348- in-subcategory→orthogonal-to-inverted (is-reflective→left-unit-is-iso r⊣ι ι-ff)
355+ obj-orthogonal-iso C (unit.η _)
356+ (C.invertible→iso _ (C.is-invertible-inverse inv))
357+ $ in-subcategory→orthogonal-to-inverted
358+ (is-reflective→left-unit-is-iso r⊣ι ι-ff)
349359```
0 commit comments