1
1
import pytest
2
2
3
- from together .resources .finetune import createFinetuneRequest
3
+ from together .resources .finetune import create_finetune_request
4
4
from together .types .finetune import (
5
5
FinetuneTrainingLimits ,
6
6
FinetuneFullTrainingLimits ,
30
30
31
31
32
32
def test_simple_request ():
33
- request = createFinetuneRequest (
33
+ request = create_finetune_request (
34
34
model_limits = _MODEL_LIMITS ,
35
35
model = _MODEL_NAME ,
36
36
training_file = _TRAINING_FILE ,
@@ -46,7 +46,7 @@ def test_simple_request():
46
46
47
47
48
48
def test_validation_file ():
49
- request = createFinetuneRequest (
49
+ request = create_finetune_request (
50
50
model_limits = _MODEL_LIMITS ,
51
51
model = _MODEL_NAME ,
52
52
training_file = _TRAINING_FILE ,
@@ -61,14 +61,14 @@ def test_no_training_file():
61
61
with pytest .raises (
62
62
TypeError , match = "missing 1 required positional argument: 'training_file'"
63
63
):
64
- _ = createFinetuneRequest (
64
+ _ = create_finetune_request (
65
65
model_limits = _MODEL_LIMITS ,
66
66
model = _MODEL_NAME ,
67
67
)
68
68
69
69
70
70
def test_lora_request ():
71
- request = createFinetuneRequest (
71
+ request = create_finetune_request (
72
72
model_limits = _MODEL_LIMITS ,
73
73
model = _MODEL_NAME ,
74
74
training_file = _TRAINING_FILE ,
@@ -84,7 +84,7 @@ def test_lora_request():
84
84
85
85
86
86
def test_from_checkpoint_request ():
87
- request = createFinetuneRequest (
87
+ request = create_finetune_request (
88
88
model_limits = _MODEL_LIMITS ,
89
89
training_file = _TRAINING_FILE ,
90
90
from_checkpoint = _FROM_CHECKPOINT ,
@@ -99,7 +99,7 @@ def test_both_from_checkpoint_model_name():
99
99
ValueError ,
100
100
match = "You must specify either a model or a checkpoint to start a job from, not both" ,
101
101
):
102
- _ = createFinetuneRequest (
102
+ _ = create_finetune_request (
103
103
model_limits = _MODEL_LIMITS ,
104
104
model = _MODEL_NAME ,
105
105
training_file = _TRAINING_FILE ,
@@ -111,7 +111,7 @@ def test_no_from_checkpoint_no_model_name():
111
111
with pytest .raises (
112
112
ValueError , match = "You must specify either a model or a checkpoint"
113
113
):
114
- _ = createFinetuneRequest (
114
+ _ = create_finetune_request (
115
115
model_limits = _MODEL_LIMITS ,
116
116
training_file = _TRAINING_FILE ,
117
117
)
@@ -122,7 +122,7 @@ def test_batch_size_limit():
122
122
ValueError ,
123
123
match = "Requested batch size is higher that the maximum allowed value" ,
124
124
):
125
- _ = createFinetuneRequest (
125
+ _ = create_finetune_request (
126
126
model_limits = _MODEL_LIMITS ,
127
127
model = _MODEL_NAME ,
128
128
training_file = _TRAINING_FILE ,
@@ -132,7 +132,7 @@ def test_batch_size_limit():
132
132
with pytest .raises (
133
133
ValueError , match = "Requested batch size is lower that the minimum allowed value"
134
134
):
135
- _ = createFinetuneRequest (
135
+ _ = create_finetune_request (
136
136
model_limits = _MODEL_LIMITS ,
137
137
model = _MODEL_NAME ,
138
138
training_file = _TRAINING_FILE ,
@@ -143,7 +143,7 @@ def test_batch_size_limit():
143
143
ValueError ,
144
144
match = "Requested batch size is higher that the maximum allowed value" ,
145
145
):
146
- _ = createFinetuneRequest (
146
+ _ = create_finetune_request (
147
147
model_limits = _MODEL_LIMITS ,
148
148
model = _MODEL_NAME ,
149
149
training_file = _TRAINING_FILE ,
@@ -154,7 +154,7 @@ def test_batch_size_limit():
154
154
with pytest .raises (
155
155
ValueError , match = "Requested batch size is lower that the minimum allowed value"
156
156
):
157
- _ = createFinetuneRequest (
157
+ _ = create_finetune_request (
158
158
model_limits = _MODEL_LIMITS ,
159
159
model = _MODEL_NAME ,
160
160
training_file = _TRAINING_FILE ,
@@ -167,7 +167,7 @@ def test_non_lora_model():
167
167
with pytest .raises (
168
168
ValueError , match = "LoRA adapters are not supported for the selected model."
169
169
):
170
- _ = createFinetuneRequest (
170
+ _ = create_finetune_request (
171
171
model_limits = FinetuneTrainingLimits (
172
172
max_num_epochs = 20 ,
173
173
max_learning_rate = 1.0 ,
@@ -188,7 +188,7 @@ def test_non_full_model():
188
188
with pytest .raises (
189
189
ValueError , match = "Full training is not supported for the selected model."
190
190
):
191
- _ = createFinetuneRequest (
191
+ _ = create_finetune_request (
192
192
model_limits = FinetuneTrainingLimits (
193
193
max_num_epochs = 20 ,
194
194
max_learning_rate = 1.0 ,
@@ -210,7 +210,7 @@ def test_non_full_model():
210
210
@pytest .mark .parametrize ("warmup_ratio" , [- 1.0 , 2.0 ])
211
211
def test_bad_warmup (warmup_ratio ):
212
212
with pytest .raises (ValueError , match = "Warmup ratio should be between 0 and 1" ):
213
- _ = createFinetuneRequest (
213
+ _ = create_finetune_request (
214
214
model_limits = _MODEL_LIMITS ,
215
215
model = _MODEL_NAME ,
216
216
training_file = _TRAINING_FILE ,
@@ -223,7 +223,7 @@ def test_bad_min_lr_ratio(min_lr_ratio):
223
223
with pytest .raises (
224
224
ValueError , match = "Min learning rate ratio should be between 0 and 1"
225
225
):
226
- _ = createFinetuneRequest (
226
+ _ = create_finetune_request (
227
227
model_limits = _MODEL_LIMITS ,
228
228
model = _MODEL_NAME ,
229
229
training_file = _TRAINING_FILE ,
@@ -234,7 +234,7 @@ def test_bad_min_lr_ratio(min_lr_ratio):
234
234
@pytest .mark .parametrize ("max_grad_norm" , [- 1.0 , - 0.01 ])
235
235
def test_bad_max_grad_norm (max_grad_norm ):
236
236
with pytest .raises (ValueError , match = "Max gradient norm should be non-negative" ):
237
- _ = createFinetuneRequest (
237
+ _ = create_finetune_request (
238
238
model_limits = _MODEL_LIMITS ,
239
239
model = _MODEL_NAME ,
240
240
training_file = _TRAINING_FILE ,
@@ -245,7 +245,7 @@ def test_bad_max_grad_norm(max_grad_norm):
245
245
@pytest .mark .parametrize ("weight_decay" , [- 1.0 , - 0.01 ])
246
246
def test_bad_weight_decay (weight_decay ):
247
247
with pytest .raises (ValueError , match = "Weight decay should be non-negative" ):
248
- _ = createFinetuneRequest (
248
+ _ = create_finetune_request (
249
249
model_limits = _MODEL_LIMITS ,
250
250
model = _MODEL_NAME ,
251
251
training_file = _TRAINING_FILE ,
@@ -255,7 +255,7 @@ def test_bad_weight_decay(weight_decay):
255
255
256
256
def test_bad_training_method ():
257
257
with pytest .raises (ValueError , match = "training_method must be one of .*" ):
258
- _ = createFinetuneRequest (
258
+ _ = create_finetune_request (
259
259
model_limits = _MODEL_LIMITS ,
260
260
model = _MODEL_NAME ,
261
261
training_file = _TRAINING_FILE ,
0 commit comments