Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Give important and frequent terms a grouping.var argument #37

Open
trinker opened this issue Feb 27, 2017 · 2 comments
Open

Give important and frequent terms a grouping.var argument #37

trinker opened this issue Feb 27, 2017 · 2 comments

Comments

@trinker
Copy link
Owner

trinker commented Feb 27, 2017

n of each group

@trinker
Copy link
Owner Author

trinker commented May 18, 2017

will affect the plot methods

@trinker
Copy link
Owner Author

trinker commented Feb 17, 2018

frequent_terms <- function(text.var, n = 20, grouping.var = NULL, 
	stopwords = stopwords::stopwords("english"), min.freq = NULL, min.char = 4, 
	max.char = Inf, stem = FALSE, language = "porter", strip = TRUE,
    strip.regex = "[^a-z' ]", alphabetical = FALSE, ...) {
	
	
    if (is.data.frame(text.var)) stop("`text.var` is a `data.frame`; please pass a vector")

    text.var <- stringi::stri_trans_tolower(text.var)

    ## remove nonascii characters
    text.var <- iconv(text.var, "latin1", "ASCII", sub = "")

    ## regex strip of non-word/space characters
    if (isTRUE(strip)) text.var <- gsub(strip.regex, " ", text.var)
    
    if(is.null(grouping.var)) {
        G <- "all"
    } else {
        if (is.list(grouping.var)) {
            m <- unlist(as.character(substitute(grouping.var))[-1])
            G <- sapply(strsplit(m, "$", fixed=TRUE), function(x) {
                x[length(x)]
            })
        } else {
            G <- as.character(substitute(grouping.var))
            G <- G[length(G)]
        }
    }
    
    if(is.null(grouping.var)){
        grouping <- rep("all", length(text.var))
    } else {
        if (isTRUE(grouping.var)) {
            grouping <- seq_along(text.var)
        } else {
            if (is.list(grouping.var) & length(grouping.var)>1) {
                grouping <- grouping.var
            } else {
                grouping <- unlist(grouping.var)
            }
        }
    }

    if(!missing(group.names)) {
        G <- group.names
    }

    DF <- data.frame(text.var, check.names = FALSE, stringsAsFactors = FALSE)
    DF[G] <- grouping
    
    DF <- data.table::data.table(DF)
    
    DF <- DF[, list(text.var = paste(text.var, collapse = ' ')), by = G]
    
    grp <- DF[, G, with = FALSE]
    
    outs <- lapply(seq_len(nrow(DF)),  function(i){
    	
    	cnts <- frequent_terms_helper(DF[['text.var']][i], n = n, stopwords = stopwords, 
    		min.freq = min.freq, min.char = min.char, max.char = max.char, 
    		stem = stem, language = language, strip = strip, 
    		strip.regex = strip.regex, alphabetical = alphabetical
    	)
# browser()
    	
    	out <- as.data.frame(
    		dplyr::bind_cols(grp[rep(i, nrow(cnts)), ], cnts),
    		check.names = FALSE,
    		stringsAsFactors = FALSE
    	)

    	n.words <- attributes(out)[["n.words"]]
    	
	    if (isTRUE(alphabetical)){
	        out <- out[order(out[["term"]]), ]
	    }
	
	    if (n < 1) {
	        n <- round(n * nrow(out), 0)
	    }
	
	    if (n > nrow(out)) {
	        n <- nrow(out)
	    }
	
	    if (is.null(min.freq)) {
	        out2 <- out[out[["frequency"]] >= out[["frequency"]][n], ]
	    } else {
	        out2 <- out[out[["frequency"]] >= min.freq, ]
	        n <- nrow(out2)
	    }
	
	    class(out2) <- c('frequent_terms', class(out))
	    attributes(out2)[["n"]] <- n
	    attributes(out2)[["full"]] <- out
	    attributes(out2)[["n.words"]] <- n.words
	    attributes(out2)[["group.var"]] <- G
	    out2    	
    	
    })
    
}

text.var <- termco::presidential_debates_2012$dialogue
alphabetical <- FALSE
grouping.var <- termco::presidential_debates_2012$person
language <- "porter"
max.char <- Inf
min.char <- 4
min.freq <- NULL
n <- 20
stem <- FALSE
stopwords <- stopwords::stopwords("english")
strip <- TRUE
strip.regex <- "[^a-z' ]"
 


frequent_terms_helper <- function(text.var, n = 20, 
	stopwords = stopwords::stopwords("english"), min.freq = NULL, min.char = 4, 
	max.char = Inf, stem = FALSE, language = "porter", strip = TRUE,
    strip.regex = "[^a-z' ]", alphabetical = FALSE, ...) {

    y <- unlist(stringi::stri_extract_all_words(text.var))
    n.words <- sum(stringi::stri_count_words(text.var), na.rm = TRUE)

    ## stemming
    if (isTRUE(stem)) {
        y <- SnowballC::wordStem(y, language = language)
        if (! is.null(stopwords)) stopwords <- SnowballC::wordStem(stopwords, language = language)
    }

    ## exclude less than the min character cut-off
    y <- y[nchar(y) > min.char - 1]

    ## exclude more than the max character cut-off
    y <- y[nchar(y) < max.char + 1]

    ## data frame of counts
    y <- sort(table(y), TRUE)

    ## stopword removal
    if (!is.null(stopwords)){
        y <- y[!names(y) %in% stopwords]
    }

    out <- data.frame(term = names(y), frequency = c(unlist(y, use.names=FALSE)),
        stringsAsFactors = FALSE, row.names=NULL)

    attributes(out)[["n.words"]] <- n.words
    
    out
}



Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant