-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
278 lines (235 loc) · 9.27 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import logging
import math
import os
import sys
import datasets
import transformers
from datasets import load_dataset
from transformers import HfArgumentParser, Trainer
from transformers.trainer_utils import get_last_checkpoint
from utils.another_utils import set_seed
from utils.arguments import DataArguments, ModelArguments, TextToSqlTrainingArguments
from utils.load_model import load_model_with_peft_and_tokenizer
from utils.prompter import generate_llama_prompt_sql
from utils.trainer import CustomTrainer
logger = logging.getLogger(__name__)
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
def train():
# HF parser
parser = HfArgumentParser(
(
ModelArguments,
DataArguments,
TextToSqlTrainingArguments,
)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# TODO: Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Model parameters {model_args}")
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Detecting last checkpoint.
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
if "wandb" in training_args.report_to:
os.environ["WANDB_PROJECT"] = training_args.wandb_project
# TODO: load model with peft and tokenizer
model, tokenizer = load_model_with_peft_and_tokenizer(
model_args,
training_args,
)
print(f"Model: {model}")
# TODO: Load dataset from HF Hub
dataset = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
)
# Determine model_max_length for truncation
model_max_length = data_args.model_max_length
if "validation" not in dataset.keys():
if data_args.val_set_size > 0:
if "test" not in dataset.keys():
train_val_data = dataset["train"].train_test_split(
test_size=data_args.val_set_size, shuffle=True, seed=42
)
train_val_data["validation"] = train_val_data["test"]
else:
raise ValueError("val_set_size must large than 0.")
else:
train_val_data = dataset
def tokenize(prompt, add_eos_token=True):
result = tokenizer(
prompt,
truncation=True,
max_length=model_max_length,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < model_max_length
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
user_prompt = generate_llama_prompt_sql(
data_point["question"],
data_point["context"],
)
user_prompt_ids = tokenizer(
user_prompt, truncation=True, max_length=model_max_length
)["input_ids"]
user_prompt_len = len(user_prompt_ids)
full_prompt = generate_llama_prompt_sql(
data_point["question"],
data_point["context"],
data_point["answer"],
)
tokenized_full_prompt = tokenizer(
full_prompt + tokenizer.eos_token,
truncation=True,
max_length=model_max_length,
)
ignored_length = user_prompt_len - 1
tokenized_full_prompt["labels"] = [
IGNORE_INDEX
] * ignored_length + tokenized_full_prompt["input_ids"].copy()[ignored_length:]
tokenized_full_prompt.pop("attention_mask")
return tokenized_full_prompt
# with training_args.main_process_first(desc="dataset map tokenization"):
train_data = train_val_data["train"].map(
generate_and_tokenize_prompt,
num_proc=data_args.preprocessing_num_workers,
remove_columns=next(iter(dataset.values())).column_names,
desc="preprocess train data set",
)
val_data = train_val_data["validation"].map(
generate_and_tokenize_prompt,
num_proc=data_args.preprocessing_num_workers,
remove_columns=next(iter(dataset.values())).column_names,
desc="preprocess val data set",
)
trainer = CustomTrainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=training_args,
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(train_data)
)
metrics["train_samples"] = min(max_train_samples, len(train_data))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples
if data_args.max_eval_samples is not None
else len(val_data)
)
metrics["eval_samples"] = min(max_eval_samples, len(val_data))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "text-generation",
# "peft_type": PEFT_TYPE_MAPPING_CONFIG[peft_args.peft_type][1],
}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs[
"dataset"
] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
# old_state_dict = model.state_dict
# model.state_dict = (
# lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
# ).__get__(model, type(model))
# if torch.__version__ >= "2" and sys.platform != "win32":
# model = torch.compile(model)
# trainer.train()
# model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
train()