Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 14 additions & 6 deletions RansacLib/ransac.h
Original file line number Diff line number Diff line change
Expand Up @@ -259,7 +259,8 @@ class LocallyOptimizedMSAC : public RansacBase {
solver.LeastSquares(stats.inlier_indices, &refined_model);

double score = std::numeric_limits<double>::max();
ScoreModel(solver, refined_model, kSqrInlierThresh, &score);
ScoreModel(solver, refined_model, kSqrInlierThresh, &score,
stats.best_model_score);
if (score < stats.best_model_score) {
stats.best_model_score = score;
*best_model = refined_model;
Expand All @@ -283,7 +284,8 @@ class LocallyOptimizedMSAC : public RansacBase {
*best_model_id = 0;
for (int m = 0; m < num_models; ++m) {
double score = std::numeric_limits<double>::max();
ScoreModel(solver, models[m], squared_inlier_threshold, &score);
ScoreModel(solver, models[m], squared_inlier_threshold, &score,
*best_score);

if (score < *best_score) {
*best_score = score;
Expand All @@ -293,12 +295,16 @@ class LocallyOptimizedMSAC : public RansacBase {
}

void ScoreModel(const Solver& solver, const Model& model,
const double squared_inlier_threshold, double* score) const {
const double squared_inlier_threshold, double* score
const double best_score) const {
const int kNumData = solver.num_data();
*score = 0.0;
for (int i = 0; i < kNumData; ++i) {
double squared_error = solver.EvaluateModelOnPoint(model, i);
*score += ComputeScore(squared_error, squared_inlier_threshold);
if( *score > best_score) {
return;
}
}
}

Expand Down Expand Up @@ -361,7 +367,7 @@ class LocallyOptimizedMSAC : public RansacBase {
LeastSquaresFit(options, kSqInThresh * kThreshMult, solver, rng, &m_init);

double score = std::numeric_limits<double>::max();
ScoreModel(solver, m_init, kSqInThresh, &score);
ScoreModel(solver, m_init, kSqInThresh, &score, score_best_minimal_model);
UpdateBestModel(score, m_init, score_best_minimal_model,
best_minimal_model);

Expand All @@ -383,7 +389,8 @@ class LocallyOptimizedMSAC : public RansacBase {
Model m_non_min;
if (!solver.NonMinimalSolver(sample, &m_non_min)) continue;

ScoreModel(solver, m_non_min, kSqInThresh, &score);
ScoreModel(solver, m_non_min, kSqInThresh, &score,
score_best_minimal_model);
UpdateBestModel(score, m_non_min, score_best_minimal_model,
best_minimal_model);

Expand All @@ -398,7 +405,8 @@ class LocallyOptimizedMSAC : public RansacBase {
for (int i = 0; i < options.num_lsq_iterations_; ++i) {
LeastSquaresFit(options, thresh, solver, rng, &m_non_min);

ScoreModel(solver, m_non_min, kSqInThresh, &score);
ScoreModel(solver, m_non_min, kSqInThresh, &score,
score_best_minimal_model);
UpdateBestModel(score, m_non_min, score_best_minimal_model,
best_minimal_model);
thresh -= thresh_mult_update;
Expand Down