-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexe_traffic.py
70 lines (56 loc) · 1.99 KB
/
exe_traffic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import torch
import datetime
import json
import yaml
import os
import numpy as np
import setproctitle
from main_model import CSDI_Value
from dataset_traffic import get_dataloader
from utils import train, evaluate
setproctitle.setproctitle("main-市区@qxq")
torch.autograd.set_detect_anomaly(True)
parser = argparse.ArgumentParser(description="CSDI")
parser.add_argument("--config", type=str, default="base.yaml")
parser.add_argument('--device', default='cuda:1', help='Device for Attack')
parser.add_argument("--seed", type=int, default=1)
parser.add_argument(
"--nfold", type=int, default=0, help="for 5fold test (valid value:[0-4])"
)
parser.add_argument("--unconditional", action="store_true")
parser.add_argument("--modelfolder", type=str, default="")
parser.add_argument("--nsample", type=int, default=100)
args = parser.parse_args()
print(args)
path = "config/" + args.config
with open(path, "r") as f:
config = yaml.safe_load(f)
print(json.dumps(config, indent=4))
current_time = datetime.datetime.now().strftime("%m%d_%H%M%S")
foldername = "./save/" + "shiqu_" + current_time + "/"
print('model folder:', foldername)
os.makedirs(foldername, exist_ok=True)
with open(foldername + "config.json", "w") as f:
json.dump(config, f, indent=4)
train_loader, valid_loader, test_loader = get_dataloader(
seed=args.seed,
nfold=args.nfold,
batch_size=config["train"]["batch_size"],
)
test_dataset = test_loader.dataset
test_data = np.array([test_dataset[i] for i in range(len(test_dataset))])
np.save("test_dataset.npy", test_data)
model = CSDI_Value(config, args.device).to(args.device)
args.modelfolder = "shiqu_0523_001050-E600N500-C"
if args.modelfolder == "":
train(
model,
config["train"],
train_loader,
valid_loader=valid_loader,
foldername=foldername,
)
else:
model.load_state_dict(torch.load("./save/" + args.modelfolder + "/model.pth"))
evaluate(model, test_loader, nsample=args.nsample, scaler=1, foldername=foldername)